三维Navier-Stokes方程解寿命的非线性估计

IF 0.8 Q2 MATHEMATICS
J. Chemin, I. Gallagher
{"title":"三维Navier-Stokes方程解寿命的非线性估计","authors":"J. Chemin, I. Gallagher","doi":"10.2140/tunis.2019.1.273","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to establish bounds from below for the life span of regular solutions to the incompressible Navier-Stokes system, which \ninvolve norms not only of the initial data, but also of nonlinear functions of the initial data. We provide examples showing that those bounds are significant improvements to the one provided by the classical fixed point argument. One of the important ingredients is the use of a scale-invariant energy estimate.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.273","citationCount":"8","resultStr":"{\"title\":\"A nonlinear estimate of the life span of solutions\\nof the three dimensional Navier–Stokes equations\",\"authors\":\"J. Chemin, I. Gallagher\",\"doi\":\"10.2140/tunis.2019.1.273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to establish bounds from below for the life span of regular solutions to the incompressible Navier-Stokes system, which \\ninvolve norms not only of the initial data, but also of nonlinear functions of the initial data. We provide examples showing that those bounds are significant improvements to the one provided by the classical fixed point argument. One of the important ingredients is the use of a scale-invariant energy estimate.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2019.1.273\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2019.1.273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

本文的目的是从下面建立不可压缩Navier-Stokes系统正则解的寿命的界,它不仅涉及初始数据的范数,还涉及初始数据非线性函数的范数。我们提供的例子表明,这些边界是对经典不动点论证所提供的边界的显著改进。其中一个重要的组成部分是使用尺度不变的能量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonlinear estimate of the life span of solutions of the three dimensional Navier–Stokes equations
The purpose of this article is to establish bounds from below for the life span of regular solutions to the incompressible Navier-Stokes system, which involve norms not only of the initial data, but also of nonlinear functions of the initial data. We provide examples showing that those bounds are significant improvements to the one provided by the classical fixed point argument. One of the important ingredients is the use of a scale-invariant energy estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信