Bin Zhou, Huiling Wang, Hongtao Zhou, Ke Wang, Shudong Wang, Wenlong Zhou
{"title":"立体茧与扁平茧的结构与性能比较分析","authors":"Bin Zhou, Huiling Wang, Hongtao Zhou, Ke Wang, Shudong Wang, Wenlong Zhou","doi":"10.2478/aut-2021-0042","DOIUrl":null,"url":null,"abstract":"Abstract Cocoon is a kind of natural biopolymer material with reasonable structure and various functions. However, its structure and functions are often destroyed in practical application. In this study, we took common Bombyx Mori as the research object, and provided different cocooning sites for single or multiple silkworms to construct common stereoscopic cocoons (“normal cocoons” [NC]) and flat cocoons (“single-silkworm flat cocoons” [SFC] and “multi-silkworm flat cocoons” [MFC]), respectively, and compared the morphological structure and basic properties of these cocoons. The study found that the flat cocoons have similar multi-layered variable structure and characteristics compared to those of the common cocoons; also, morphological characteristics and physical and chemical properties of silk fiber from outer layer to inner layer, such as sericin content, fiber fineness, and change rule of basic mechanical properties, are completely consistent with those of the common cocoons. It can be considered that the flat cocoons are constructed by silkworms in the same “procedural” process as that of common cocoons. Due to the expansion of cocooning space, the mechanical properties of fibers are significantly improved. By controlling the size of the cocooning space or the quantity of silkworms cocooning simultaneously, and the time of spinning, a cocoon material with controllable thickness, weight per square meter, porosity, and number of cocoon layers can be obtained as a composite material for direct application.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"23 1","pages":"11 - 17"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of Structure and Properties of Stereoscopic Cocoon and Flat Cocoon\",\"authors\":\"Bin Zhou, Huiling Wang, Hongtao Zhou, Ke Wang, Shudong Wang, Wenlong Zhou\",\"doi\":\"10.2478/aut-2021-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cocoon is a kind of natural biopolymer material with reasonable structure and various functions. However, its structure and functions are often destroyed in practical application. In this study, we took common Bombyx Mori as the research object, and provided different cocooning sites for single or multiple silkworms to construct common stereoscopic cocoons (“normal cocoons” [NC]) and flat cocoons (“single-silkworm flat cocoons” [SFC] and “multi-silkworm flat cocoons” [MFC]), respectively, and compared the morphological structure and basic properties of these cocoons. The study found that the flat cocoons have similar multi-layered variable structure and characteristics compared to those of the common cocoons; also, morphological characteristics and physical and chemical properties of silk fiber from outer layer to inner layer, such as sericin content, fiber fineness, and change rule of basic mechanical properties, are completely consistent with those of the common cocoons. It can be considered that the flat cocoons are constructed by silkworms in the same “procedural” process as that of common cocoons. Due to the expansion of cocooning space, the mechanical properties of fibers are significantly improved. By controlling the size of the cocooning space or the quantity of silkworms cocooning simultaneously, and the time of spinning, a cocoon material with controllable thickness, weight per square meter, porosity, and number of cocoon layers can be obtained as a composite material for direct application.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":\"23 1\",\"pages\":\"11 - 17\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2021-0042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2021-0042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Comparative Analysis of Structure and Properties of Stereoscopic Cocoon and Flat Cocoon
Abstract Cocoon is a kind of natural biopolymer material with reasonable structure and various functions. However, its structure and functions are often destroyed in practical application. In this study, we took common Bombyx Mori as the research object, and provided different cocooning sites for single or multiple silkworms to construct common stereoscopic cocoons (“normal cocoons” [NC]) and flat cocoons (“single-silkworm flat cocoons” [SFC] and “multi-silkworm flat cocoons” [MFC]), respectively, and compared the morphological structure and basic properties of these cocoons. The study found that the flat cocoons have similar multi-layered variable structure and characteristics compared to those of the common cocoons; also, morphological characteristics and physical and chemical properties of silk fiber from outer layer to inner layer, such as sericin content, fiber fineness, and change rule of basic mechanical properties, are completely consistent with those of the common cocoons. It can be considered that the flat cocoons are constructed by silkworms in the same “procedural” process as that of common cocoons. Due to the expansion of cocooning space, the mechanical properties of fibers are significantly improved. By controlling the size of the cocooning space or the quantity of silkworms cocooning simultaneously, and the time of spinning, a cocoon material with controllable thickness, weight per square meter, porosity, and number of cocoon layers can be obtained as a composite material for direct application.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.