Chanena Alvarado-Aguilar, Roberto Luna Burgos, Heydi Ganchozo Intriago, Alfredo Leal-Chantong, Daniel Alfredo LEAL ALVARADO
{"title":"香蕉(Musa acuminata)废料纳米银和纤维素微纤维复合材料:绿色合成、抗氧化性能和抗菌能力","authors":"Chanena Alvarado-Aguilar, Roberto Luna Burgos, Heydi Ganchozo Intriago, Alfredo Leal-Chantong, Daniel Alfredo LEAL ALVARADO","doi":"10.17268/sci.agropecu.2023.003","DOIUrl":null,"url":null,"abstract":"The green chemistry promotes the synthesis of nanomaterials from plant extracts as a new climate intelligent alternative to the use of conventional protocols based on costly and toxic chemicals. Therefore, this research was undertaken to analyses the efficiency of banana (peels and rachis) waste extracts in the production of a micro-composite composed by silver nanoparticles (AgNPs) and cellulose microfibers (CMF) respectively. Results showed the synthesis of 24 nm diameter spherical particles AgNPs, with a peak of absorbance at 410 nm, in (v/v) water:ethanol extracts of banana peels at a final dilution of 3.10-2. Concomitantly, 50-350 µm in length and 5-10 µm of diameter CMF were obtained via the oxalic acid hydrolysis of the oven-dried banana rachis. The micro-composite (AgNPs-CMF) and AgNPs displayed an active reducing capacity over 60% determined by the DPPH test, and active bacterial activity against E. Coli and S. aureus in Petri dishes. Overall results support the use of banana waste for the synthesis of AgNPs and CMF for industrial purposes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silver nanoparticles and cellulose microfiber micro-composite from banana (Musa acuminata) waste: green synthesis, antioxidant property and antimicrobial capacity\",\"authors\":\"Chanena Alvarado-Aguilar, Roberto Luna Burgos, Heydi Ganchozo Intriago, Alfredo Leal-Chantong, Daniel Alfredo LEAL ALVARADO\",\"doi\":\"10.17268/sci.agropecu.2023.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The green chemistry promotes the synthesis of nanomaterials from plant extracts as a new climate intelligent alternative to the use of conventional protocols based on costly and toxic chemicals. Therefore, this research was undertaken to analyses the efficiency of banana (peels and rachis) waste extracts in the production of a micro-composite composed by silver nanoparticles (AgNPs) and cellulose microfibers (CMF) respectively. Results showed the synthesis of 24 nm diameter spherical particles AgNPs, with a peak of absorbance at 410 nm, in (v/v) water:ethanol extracts of banana peels at a final dilution of 3.10-2. Concomitantly, 50-350 µm in length and 5-10 µm of diameter CMF were obtained via the oxalic acid hydrolysis of the oven-dried banana rachis. The micro-composite (AgNPs-CMF) and AgNPs displayed an active reducing capacity over 60% determined by the DPPH test, and active bacterial activity against E. Coli and S. aureus in Petri dishes. Overall results support the use of banana waste for the synthesis of AgNPs and CMF for industrial purposes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17268/sci.agropecu.2023.003\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2023.003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Silver nanoparticles and cellulose microfiber micro-composite from banana (Musa acuminata) waste: green synthesis, antioxidant property and antimicrobial capacity
The green chemistry promotes the synthesis of nanomaterials from plant extracts as a new climate intelligent alternative to the use of conventional protocols based on costly and toxic chemicals. Therefore, this research was undertaken to analyses the efficiency of banana (peels and rachis) waste extracts in the production of a micro-composite composed by silver nanoparticles (AgNPs) and cellulose microfibers (CMF) respectively. Results showed the synthesis of 24 nm diameter spherical particles AgNPs, with a peak of absorbance at 410 nm, in (v/v) water:ethanol extracts of banana peels at a final dilution of 3.10-2. Concomitantly, 50-350 µm in length and 5-10 µm of diameter CMF were obtained via the oxalic acid hydrolysis of the oven-dried banana rachis. The micro-composite (AgNPs-CMF) and AgNPs displayed an active reducing capacity over 60% determined by the DPPH test, and active bacterial activity against E. Coli and S. aureus in Petri dishes. Overall results support the use of banana waste for the synthesis of AgNPs and CMF for industrial purposes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.