基于多层感知器神经网络的日本电离层总电子含量模型

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Atmosphere Pub Date : 2023-03-27 DOI:10.3390/atmos14040634
Wang Li, Xuequn Wu
{"title":"基于多层感知器神经网络的日本电离层总电子含量模型","authors":"Wang Li, Xuequn Wu","doi":"10.3390/atmos14040634","DOIUrl":null,"url":null,"abstract":"Ionospheric delay has a severe effect on reducing the accuracy of positioning and navigation of single-frequency receivers. Therefore, it is necessary to construct a precise regional ionospheric model for real-time Global Navigation Satellite System (GNSS) applications. The total electron contents (TECs) of 839 GNSS stations affiliated with the GPS Earth Observation Network were used to build a Japanese ionospheric model (JIM) based on a multi-layer perceptron neural network. During quiet space conditions, the correlation coefficient between the targets and the predictions of the JIM was about 0.98, and the root-mean square error (RMSE) of TEC residuals was ~1.5TECU, while under severe space events, the correlation coefficient increased to 0.99, and the corresponding RMSE dropped to 0.96 TECU. Moreover, the JIM model successfully reconstructed the two-dimensional (time vs latitude) TEC maps, and the TEC maps had evident hourly and seasonal variations. Most of TEC residuals accumulated between universal time 01–06 with an averaged magnitude of 1-2TECU. Furthermore, the JIM model had a perfect prediction performance under various kinds of complex space environments. In the quiet days, the prediction accuracy of the JIM was nearly equal to the global ionosphere map (GIM), and in some moments, the JIM was more competitive than the GIM. In the disturbed days, the RMSEs of TEC residuals were proportional to the solar wind speed and were inversely proportional to the geomagnetic Dst value. The maximum RMSE of the JIM was lower than 2TECU, while the corresponding RMSEs for the IRI and TIE-GCM exceeded 5TECU.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ionospheric Total Electron Content Model with a Storm Option over Japan Based on a Multi-Layer Perceptron Neural Network\",\"authors\":\"Wang Li, Xuequn Wu\",\"doi\":\"10.3390/atmos14040634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionospheric delay has a severe effect on reducing the accuracy of positioning and navigation of single-frequency receivers. Therefore, it is necessary to construct a precise regional ionospheric model for real-time Global Navigation Satellite System (GNSS) applications. The total electron contents (TECs) of 839 GNSS stations affiliated with the GPS Earth Observation Network were used to build a Japanese ionospheric model (JIM) based on a multi-layer perceptron neural network. During quiet space conditions, the correlation coefficient between the targets and the predictions of the JIM was about 0.98, and the root-mean square error (RMSE) of TEC residuals was ~1.5TECU, while under severe space events, the correlation coefficient increased to 0.99, and the corresponding RMSE dropped to 0.96 TECU. Moreover, the JIM model successfully reconstructed the two-dimensional (time vs latitude) TEC maps, and the TEC maps had evident hourly and seasonal variations. Most of TEC residuals accumulated between universal time 01–06 with an averaged magnitude of 1-2TECU. Furthermore, the JIM model had a perfect prediction performance under various kinds of complex space environments. In the quiet days, the prediction accuracy of the JIM was nearly equal to the global ionosphere map (GIM), and in some moments, the JIM was more competitive than the GIM. In the disturbed days, the RMSEs of TEC residuals were proportional to the solar wind speed and were inversely proportional to the geomagnetic Dst value. The maximum RMSE of the JIM was lower than 2TECU, while the corresponding RMSEs for the IRI and TIE-GCM exceeded 5TECU.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos14040634\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos14040634","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电离层延迟严重影响单频接收机的定位和导航精度。因此,建立精确的区域电离层模型是全球导航卫星系统(GNSS)实时应用的必要条件。利用GPS地球观测网839个GNSS站点的总电子含量(tec)数据,建立了基于多层感知器神经网络的日本电离层模型(JIM)。在安静空间条件下,目标与JIM预测的相关系数约为0.98,TEC残差的均方根误差(RMSE)为~1.5TECU,而在剧烈空间事件下,相关系数增加到0.99,相应的RMSE降至0.96 TECU。此外,JIM模式成功重建了二维(时间-纬度)TEC图,TEC图具有明显的逐时和季节变化。大部分TEC残余在世界时01-06之间积累,平均量级为1-2TECU。此外,JIM模型在各种复杂空间环境下都具有较好的预测性能。在静默期,JIM的预测精度与全球电离层图(GIM)接近,在某些时刻,JIM比GIM更具竞争力。在扰动日,TEC残差的均方根误差与太阳风速度成正比,与地磁Dst值成反比。JIM的最大RMSE小于2TECU,而IRI和TIE-GCM的RMSE大于5TECU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ionospheric Total Electron Content Model with a Storm Option over Japan Based on a Multi-Layer Perceptron Neural Network
Ionospheric delay has a severe effect on reducing the accuracy of positioning and navigation of single-frequency receivers. Therefore, it is necessary to construct a precise regional ionospheric model for real-time Global Navigation Satellite System (GNSS) applications. The total electron contents (TECs) of 839 GNSS stations affiliated with the GPS Earth Observation Network were used to build a Japanese ionospheric model (JIM) based on a multi-layer perceptron neural network. During quiet space conditions, the correlation coefficient between the targets and the predictions of the JIM was about 0.98, and the root-mean square error (RMSE) of TEC residuals was ~1.5TECU, while under severe space events, the correlation coefficient increased to 0.99, and the corresponding RMSE dropped to 0.96 TECU. Moreover, the JIM model successfully reconstructed the two-dimensional (time vs latitude) TEC maps, and the TEC maps had evident hourly and seasonal variations. Most of TEC residuals accumulated between universal time 01–06 with an averaged magnitude of 1-2TECU. Furthermore, the JIM model had a perfect prediction performance under various kinds of complex space environments. In the quiet days, the prediction accuracy of the JIM was nearly equal to the global ionosphere map (GIM), and in some moments, the JIM was more competitive than the GIM. In the disturbed days, the RMSEs of TEC residuals were proportional to the solar wind speed and were inversely proportional to the geomagnetic Dst value. The maximum RMSE of the JIM was lower than 2TECU, while the corresponding RMSEs for the IRI and TIE-GCM exceeded 5TECU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信