Kai Chen , Qi-meng Liu , Wei-hua Peng , Yu Liu , Zi-tao Wang
{"title":"基于APCS-MLR多元统计技术的安徽省典型农业城市河流水污染源头解析","authors":"Kai Chen , Qi-meng Liu , Wei-hua Peng , Yu Liu , Zi-tao Wang","doi":"10.1016/j.wse.2022.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F<sup>−</sup>, Cl<sup>−</sup>, <span><math><mrow><msubsup><mtext>SO</mtext><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></math></span>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score–multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, <em>ρ</em>(F<sup>−</sup>), <em>ρ</em>(<span><math><mrow><msubsup><mtext>SO</mtext><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></math></span>), and <em>ρ</em>(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 2","pages":"Pages 165-174"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS–MLR\",\"authors\":\"Kai Chen , Qi-meng Liu , Wei-hua Peng , Yu Liu , Zi-tao Wang\",\"doi\":\"10.1016/j.wse.2022.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F<sup>−</sup>, Cl<sup>−</sup>, <span><math><mrow><msubsup><mtext>SO</mtext><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></math></span>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score–multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, <em>ρ</em>(F<sup>−</sup>), <em>ρ</em>(<span><math><mrow><msubsup><mtext>SO</mtext><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></math></span>), and <em>ρ</em>(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"16 2\",\"pages\":\"Pages 165-174\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237022000989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237022000989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS–MLR
The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F−, Cl−, , Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score–multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F−), ρ(), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.