Matteo Costantini, Martin Möller, Jonathan Zachhuber
{"title":"阿贝尔微分模空间的Chern类和欧拉特征","authors":"Matteo Costantini, Martin Möller, Jonathan Zachhuber","doi":"10.1017/fmp.2022.10","DOIUrl":null,"url":null,"abstract":"Abstract For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent bundle of the compactification. The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of multi-scale differentials and computational tools in the Chow ring, such as a description of normal bundles to boundary divisors.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials\",\"authors\":\"Matteo Costantini, Martin Möller, Jonathan Zachhuber\",\"doi\":\"10.1017/fmp.2022.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent bundle of the compactification. The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of multi-scale differentials and computational tools in the Chow ring, such as a description of normal bundles to boundary divisors.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2022.10\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.10","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials
Abstract For the moduli spaces of Abelian differentials, the Euler characteristic is one of the most intrinsic topological invariants. We give a formula for the Euler characteristic that relies on intersection theory on the smooth compactification by multi-scale differentials. It is a consequence of a formula for the full Chern polynomial of the cotangent bundle of the compactification. The main new technical tools are an Euler sequence for the cotangent bundle of the moduli space of multi-scale differentials and computational tools in the Chow ring, such as a description of normal bundles to boundary divisors.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.