Marta Gherardini , Federico Masiero , Valerio Ianniciello , Christian Cipriani
{"title":"肌动界面:植入永磁体以恢复截肢者的感觉运动控制回路","authors":"Marta Gherardini , Federico Masiero , Valerio Ianniciello , Christian Cipriani","doi":"10.1016/j.cobme.2023.100460","DOIUrl":null,"url":null,"abstract":"<div><p>The development of a dexterous hand prosthesis that is controlled and perceived naturally by the amputee is a major challenge in biomedical engineering. Recent years have seen the rapid evolution of surgical techniques and technologies aimed at this purpose, the majority of which probe muscle electrical activity for control, and deliver electrical pulses to nerves for sensory feedback. Here, we report on the <em>myokinetic interface</em> concept that exploits magnetic field principles to achieve natural control and sensory feedback of an artificial hand. Like implantable myoelectric sensors, but using passive implants, localizing magnets implanted in independent muscles could allow monitoring their contractions and thus controlling the corresponding movements in the artificial hand in a biomimetic, direct, independent, and parallel manner. Selectively vibrating the magnets also offers a unique opportunity to study kinesthetic percepts in humans. The myokinetic interface opens new possibilities for interfacing humans with robotic technologies in an intuitive way.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"27 ","pages":"Article 100460"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The myokinetic interface: Implanting permanent magnets to restore the sensory-motor control loop in amputees\",\"authors\":\"Marta Gherardini , Federico Masiero , Valerio Ianniciello , Christian Cipriani\",\"doi\":\"10.1016/j.cobme.2023.100460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of a dexterous hand prosthesis that is controlled and perceived naturally by the amputee is a major challenge in biomedical engineering. Recent years have seen the rapid evolution of surgical techniques and technologies aimed at this purpose, the majority of which probe muscle electrical activity for control, and deliver electrical pulses to nerves for sensory feedback. Here, we report on the <em>myokinetic interface</em> concept that exploits magnetic field principles to achieve natural control and sensory feedback of an artificial hand. Like implantable myoelectric sensors, but using passive implants, localizing magnets implanted in independent muscles could allow monitoring their contractions and thus controlling the corresponding movements in the artificial hand in a biomimetic, direct, independent, and parallel manner. Selectively vibrating the magnets also offers a unique opportunity to study kinesthetic percepts in humans. The myokinetic interface opens new possibilities for interfacing humans with robotic technologies in an intuitive way.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"27 \",\"pages\":\"Article 100460\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000168\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The myokinetic interface: Implanting permanent magnets to restore the sensory-motor control loop in amputees
The development of a dexterous hand prosthesis that is controlled and perceived naturally by the amputee is a major challenge in biomedical engineering. Recent years have seen the rapid evolution of surgical techniques and technologies aimed at this purpose, the majority of which probe muscle electrical activity for control, and deliver electrical pulses to nerves for sensory feedback. Here, we report on the myokinetic interface concept that exploits magnetic field principles to achieve natural control and sensory feedback of an artificial hand. Like implantable myoelectric sensors, but using passive implants, localizing magnets implanted in independent muscles could allow monitoring their contractions and thus controlling the corresponding movements in the artificial hand in a biomimetic, direct, independent, and parallel manner. Selectively vibrating the magnets also offers a unique opportunity to study kinesthetic percepts in humans. The myokinetic interface opens new possibilities for interfacing humans with robotic technologies in an intuitive way.