{"title":"嗜粘阿克曼氏菌通过IL-17和自噬改善烟雾诱导的COPD小鼠肺损伤","authors":"Li Zhang, Junjuan Lu, Caihong Liu","doi":"10.1155/2023/4091825","DOIUrl":null,"url":null,"abstract":"Objective. Smoking is a primary hazard factor for chronic obstructive pulmonary disease (COPD), which induced a decrease in intestinal Akkermansia muciniphila abundance and Th17 imbalance in COPD. This study analyzed the changes of gut microbiota metabolism and Akkermansia abundance in patients with smoking-related COPD and explored the potential function of Akkermansia muciniphila in smoke-induced COPD mice. Methods. Gut microbiota diversity and metabolic profile were analyzed by 16S rRNA sequence and metabolomics in COPD patients. The IL-1β, IL-17, TNF-α, and IL-6 levels were tested by ELISA. Lung tissue damage was observed by HE staining. The expression of cleave-caspase 3, trophoblast antigen 2 (TROP2), and LC3 in lung tissues were analyzed by IHC or IF. The p-mTOR, mTOR, p62, and LC3 expression in lung tissues were tested by western blot. Results. The levels of IL-17, IL-1β, TNF-α, and IL-6 in the peripheral blood of COPD patients increased significantly. The number and alpha diversity of gut microbiota were decreased in COPD patients. The abundance of Akkermansia muciniphila in gut of COPD patients was decreased, and the metabolic phenotype and retinol metabolism were changed. In the retinol metabolism, the retinol and retinal were significantly changed. Akkermansia muciniphila could improve the alveolar structure and inflammatory cell infiltration in lung tissue, reduce the IL-17, TNF-α, and IL-6 levels in peripheral blood, promote the p-mTOR expression, and inhibit the expression of autophagy-related proteins in smoke-induced COPD mice. Conclusion. The number and alpha diversity of gut microbiota were decreased in patients with smoking-related COPD, accompanied by decreased abundance of Akkermansia muciniphila, and altered retinol metabolism function. Gut Akkermansia muciniphila ameliorated lung injury in smoke-induced COPD mice by inflammation and autophagy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Akkermansia muciniphila Ameliorates Lung Injury in Smoke-Induced COPD Mice by IL-17 and Autophagy\",\"authors\":\"Li Zhang, Junjuan Lu, Caihong Liu\",\"doi\":\"10.1155/2023/4091825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective. Smoking is a primary hazard factor for chronic obstructive pulmonary disease (COPD), which induced a decrease in intestinal Akkermansia muciniphila abundance and Th17 imbalance in COPD. This study analyzed the changes of gut microbiota metabolism and Akkermansia abundance in patients with smoking-related COPD and explored the potential function of Akkermansia muciniphila in smoke-induced COPD mice. Methods. Gut microbiota diversity and metabolic profile were analyzed by 16S rRNA sequence and metabolomics in COPD patients. The IL-1β, IL-17, TNF-α, and IL-6 levels were tested by ELISA. Lung tissue damage was observed by HE staining. The expression of cleave-caspase 3, trophoblast antigen 2 (TROP2), and LC3 in lung tissues were analyzed by IHC or IF. The p-mTOR, mTOR, p62, and LC3 expression in lung tissues were tested by western blot. Results. The levels of IL-17, IL-1β, TNF-α, and IL-6 in the peripheral blood of COPD patients increased significantly. The number and alpha diversity of gut microbiota were decreased in COPD patients. The abundance of Akkermansia muciniphila in gut of COPD patients was decreased, and the metabolic phenotype and retinol metabolism were changed. In the retinol metabolism, the retinol and retinal were significantly changed. Akkermansia muciniphila could improve the alveolar structure and inflammatory cell infiltration in lung tissue, reduce the IL-17, TNF-α, and IL-6 levels in peripheral blood, promote the p-mTOR expression, and inhibit the expression of autophagy-related proteins in smoke-induced COPD mice. Conclusion. The number and alpha diversity of gut microbiota were decreased in patients with smoking-related COPD, accompanied by decreased abundance of Akkermansia muciniphila, and altered retinol metabolism function. Gut Akkermansia muciniphila ameliorated lung injury in smoke-induced COPD mice by inflammation and autophagy.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4091825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/4091825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Akkermansia muciniphila Ameliorates Lung Injury in Smoke-Induced COPD Mice by IL-17 and Autophagy
Objective. Smoking is a primary hazard factor for chronic obstructive pulmonary disease (COPD), which induced a decrease in intestinal Akkermansia muciniphila abundance and Th17 imbalance in COPD. This study analyzed the changes of gut microbiota metabolism and Akkermansia abundance in patients with smoking-related COPD and explored the potential function of Akkermansia muciniphila in smoke-induced COPD mice. Methods. Gut microbiota diversity and metabolic profile were analyzed by 16S rRNA sequence and metabolomics in COPD patients. The IL-1β, IL-17, TNF-α, and IL-6 levels were tested by ELISA. Lung tissue damage was observed by HE staining. The expression of cleave-caspase 3, trophoblast antigen 2 (TROP2), and LC3 in lung tissues were analyzed by IHC or IF. The p-mTOR, mTOR, p62, and LC3 expression in lung tissues were tested by western blot. Results. The levels of IL-17, IL-1β, TNF-α, and IL-6 in the peripheral blood of COPD patients increased significantly. The number and alpha diversity of gut microbiota were decreased in COPD patients. The abundance of Akkermansia muciniphila in gut of COPD patients was decreased, and the metabolic phenotype and retinol metabolism were changed. In the retinol metabolism, the retinol and retinal were significantly changed. Akkermansia muciniphila could improve the alveolar structure and inflammatory cell infiltration in lung tissue, reduce the IL-17, TNF-α, and IL-6 levels in peripheral blood, promote the p-mTOR expression, and inhibit the expression of autophagy-related proteins in smoke-induced COPD mice. Conclusion. The number and alpha diversity of gut microbiota were decreased in patients with smoking-related COPD, accompanied by decreased abundance of Akkermansia muciniphila, and altered retinol metabolism function. Gut Akkermansia muciniphila ameliorated lung injury in smoke-induced COPD mice by inflammation and autophagy.