{"title":"模空间中非线性采样Kantorovich算子的收敛性结果","authors":"D. Costarelli, Maria Gabriella Natale, G. Vinti","doi":"10.1080/01630563.2023.2241143","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, convergence in modular spaces is investigated for a class of nonlinear discrete operators, namely the nonlinear multivariate sampling Kantorovich operators. The convergence results in the Musielak-Orlicz spaces, in the weighted Orlicz spaces, and in the Orlicz spaces follow as particular cases. Even more, spaces of functions equipped by modulars without an integral representation are presented and discussed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces\",\"authors\":\"D. Costarelli, Maria Gabriella Natale, G. Vinti\",\"doi\":\"10.1080/01630563.2023.2241143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, convergence in modular spaces is investigated for a class of nonlinear discrete operators, namely the nonlinear multivariate sampling Kantorovich operators. The convergence results in the Musielak-Orlicz spaces, in the weighted Orlicz spaces, and in the Orlicz spaces follow as particular cases. Even more, spaces of functions equipped by modulars without an integral representation are presented and discussed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2241143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2241143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces
Abstract In the present paper, convergence in modular spaces is investigated for a class of nonlinear discrete operators, namely the nonlinear multivariate sampling Kantorovich operators. The convergence results in the Musielak-Orlicz spaces, in the weighted Orlicz spaces, and in the Orlicz spaces follow as particular cases. Even more, spaces of functions equipped by modulars without an integral representation are presented and discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.