{"title":"撤回声明:昼夜节律调节因子RpaA调节光合电子传输,并改变蓝藻生长的最佳温度范围","authors":"","doi":"10.1002/1873-3468.14363","DOIUrl":null,"url":null,"abstract":"The above article, published online on 17 March 2021 in Wiley Online Library (https://febs.onlinelibrary.wiley. com/doi/10.1002/1873-3468.14075), has been retracted by agreement between the authors, the journal Editor in Chief, Michael Brunner, and John Wiley and Sons Ltd. The retraction has been agreed because, following publication, the authors realized that the clone used as WT strain (PCC7942) and reference in their study had acquired a spontaneous mutation that affected its temperature sensitivity, which impacted the conclusions about the role of RpaA. Therefore, the interpretation of the results was considered incorrect.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retraction Statement: The circadian rhythm regulator RpaA modulates photosynthetic electron transport and alters the preferable temperature range for growth in a cyanobacterium\",\"authors\":\"\",\"doi\":\"10.1002/1873-3468.14363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The above article, published online on 17 March 2021 in Wiley Online Library (https://febs.onlinelibrary.wiley. com/doi/10.1002/1873-3468.14075), has been retracted by agreement between the authors, the journal Editor in Chief, Michael Brunner, and John Wiley and Sons Ltd. The retraction has been agreed because, following publication, the authors realized that the clone used as WT strain (PCC7942) and reference in their study had acquired a spontaneous mutation that affected its temperature sensitivity, which impacted the conclusions about the role of RpaA. Therefore, the interpretation of the results was considered incorrect.\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.14363\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.14363","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
上述文章于2021年3月17日在线发表在Wiley在线图书馆(https://febs.onlinelibrary.wiley)。http://www.doi/10.1002/1873-3468.14075),经作者、期刊主编Michael Brunner和John Wiley and Sons Ltd.同意撤回。由于在论文发表后,作者意识到作为WT菌株(PCC7942)和参考的克隆获得了一个影响其温度敏感性的自发突变,从而影响了关于RpaA作用的结论,因此同意撤回。因此,对结果的解释被认为是不正确的。
Retraction Statement: The circadian rhythm regulator RpaA modulates photosynthetic electron transport and alters the preferable temperature range for growth in a cyanobacterium
The above article, published online on 17 March 2021 in Wiley Online Library (https://febs.onlinelibrary.wiley. com/doi/10.1002/1873-3468.14075), has been retracted by agreement between the authors, the journal Editor in Chief, Michael Brunner, and John Wiley and Sons Ltd. The retraction has been agreed because, following publication, the authors realized that the clone used as WT strain (PCC7942) and reference in their study had acquired a spontaneous mutation that affected its temperature sensitivity, which impacted the conclusions about the role of RpaA. Therefore, the interpretation of the results was considered incorrect.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.