{"title":"使用私有除数的安全整数除法","authors":"T. Veugen, Mark Abspoel","doi":"10.2478/popets-2021-0073","DOIUrl":null,"url":null,"abstract":"Abstract We consider secure integer division within a secret-sharing based secure multi-party computation framework, where the dividend is secret-shared, but the divisor is privately known to a single party. We mention various applications where this situation arises. We give a solution within the passive security model, and extend this to the active model, achieving a complexity linear in the input bit length. We benchmark both solutions using the well-known MP-SPDZ framework in a cloud environment. Our integer division protocol with a private divisor clearly outperforms the secret divisor solution, both in runtime and communication complexity.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"339 - 349"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Secure integer division with a private divisor\",\"authors\":\"T. Veugen, Mark Abspoel\",\"doi\":\"10.2478/popets-2021-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider secure integer division within a secret-sharing based secure multi-party computation framework, where the dividend is secret-shared, but the divisor is privately known to a single party. We mention various applications where this situation arises. We give a solution within the passive security model, and extend this to the active model, achieving a complexity linear in the input bit length. We benchmark both solutions using the well-known MP-SPDZ framework in a cloud environment. Our integer division protocol with a private divisor clearly outperforms the secret divisor solution, both in runtime and communication complexity.\",\"PeriodicalId\":74556,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"volume\":\"2021 1\",\"pages\":\"339 - 349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/popets-2021-0073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We consider secure integer division within a secret-sharing based secure multi-party computation framework, where the dividend is secret-shared, but the divisor is privately known to a single party. We mention various applications where this situation arises. We give a solution within the passive security model, and extend this to the active model, achieving a complexity linear in the input bit length. We benchmark both solutions using the well-known MP-SPDZ framework in a cloud environment. Our integer division protocol with a private divisor clearly outperforms the secret divisor solution, both in runtime and communication complexity.