全膝关节置换术生物力学分析计算模型的系统综述

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Liming Shu, Shihao Li, Naohiko Sugita
{"title":"全膝关节置换术生物力学分析计算模型的系统综述","authors":"Liming Shu,&nbsp;Shihao Li,&nbsp;Naohiko Sugita","doi":"10.1049/bsbt.2019.0012","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In vitro and in vivo testing can provide insight into knee joint mechanics and implant performance. However, these methods are costly and time-consuming, which always limits their widespread use during the design stage of the implant. This review presents a critical analysis of computational modelling (in-silicon) techniques including (i) development of a generic model of total knee replacement (TKR) and application of material properties, loading, and boundary conditions; (ii) design and execution of computational experiments; and (iii) practical applications and significant findings. The results show that the generic model and techniques provide significant insight into the general performance of TKR but have limited explicit validation. The introduction of design-of-experiments, probabilistic, and neural network methodologies in computational modelling has enabled simulation at the population level. Further advances in subjective modelling appear to be limited, mainly because of the lack of subjective materials and boundary conditions. Computational modelling will increasingly be used in the preclinical testing and design of TKR. This modelling should include subjective, multi-scale, and closely corroborated analyses to account for the variability of TKR.</p>\n </div>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/bsbt.2019.0012","citationCount":"10","resultStr":"{\"title\":\"Systematic review of computational modelling for biomechanics analysis of total knee replacement\",\"authors\":\"Liming Shu,&nbsp;Shihao Li,&nbsp;Naohiko Sugita\",\"doi\":\"10.1049/bsbt.2019.0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In vitro and in vivo testing can provide insight into knee joint mechanics and implant performance. However, these methods are costly and time-consuming, which always limits their widespread use during the design stage of the implant. This review presents a critical analysis of computational modelling (in-silicon) techniques including (i) development of a generic model of total knee replacement (TKR) and application of material properties, loading, and boundary conditions; (ii) design and execution of computational experiments; and (iii) practical applications and significant findings. The results show that the generic model and techniques provide significant insight into the general performance of TKR but have limited explicit validation. The introduction of design-of-experiments, probabilistic, and neural network methodologies in computational modelling has enabled simulation at the population level. Further advances in subjective modelling appear to be limited, mainly because of the lack of subjective materials and boundary conditions. Computational modelling will increasingly be used in the preclinical testing and design of TKR. This modelling should include subjective, multi-scale, and closely corroborated analyses to account for the variability of TKR.</p>\\n </div>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/bsbt.2019.0012\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsbt.2019.0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsbt.2019.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 10

摘要

体外和体内测试可以深入了解膝关节力学和植入物性能。然而,这些方法成本高昂且耗时,这总是限制了它们在植入物设计阶段的广泛使用。这篇综述对计算建模(硅)技术进行了关键分析,包括(i)全膝关节置换术(TKR)通用模型的开发以及材料特性、载荷和边界条件的应用;(ii)计算实验的设计和执行;三实际应用和重大发现。结果表明,通用模型和技术对TKR的总体性能提供了重要的见解,但显式验证有限。在计算建模中引入了实验设计、概率和神经网络方法,使模拟能够在总体水平上进行。主观建模的进一步进展似乎是有限的,主要是因为缺乏主观材料和边界条件。计算建模将越来越多地用于TKR的临床前测试和设计。该模型应包括主观、多尺度和密切证实的分析,以说明TKR的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Systematic review of computational modelling for biomechanics analysis of total knee replacement

Systematic review of computational modelling for biomechanics analysis of total knee replacement

In vitro and in vivo testing can provide insight into knee joint mechanics and implant performance. However, these methods are costly and time-consuming, which always limits their widespread use during the design stage of the implant. This review presents a critical analysis of computational modelling (in-silicon) techniques including (i) development of a generic model of total knee replacement (TKR) and application of material properties, loading, and boundary conditions; (ii) design and execution of computational experiments; and (iii) practical applications and significant findings. The results show that the generic model and techniques provide significant insight into the general performance of TKR but have limited explicit validation. The introduction of design-of-experiments, probabilistic, and neural network methodologies in computational modelling has enabled simulation at the population level. Further advances in subjective modelling appear to be limited, mainly because of the lack of subjective materials and boundary conditions. Computational modelling will increasingly be used in the preclinical testing and design of TKR. This modelling should include subjective, multi-scale, and closely corroborated analyses to account for the variability of TKR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信