Lu Gao, Yuan Hu, Meidan Sun, Xiang-feng Zheng, Ming Yang, Shengqi Rao
{"title":"香芹酚与ε-聚赖氨酸的协同抗菌作用","authors":"Lu Gao, Yuan Hu, Meidan Sun, Xiang-feng Zheng, Ming Yang, Shengqi Rao","doi":"10.15586/qas.v13i4.928","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate the antimicrobial efficacy of the combination of ɛ-polylysine (ɛ-PL) and carvacrol (Car) against foodborne pathogens, Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of ɛ-PL (Car) against E. coli and S. aureus were 25 μg/mL (320 μg/mL) and 12.5 μg/mL (320 μg/mL), respectively. Checkerboard assays showed that the combination of ɛ-PL and Car exerted synergistic effects against E. coli and S. aureus with fraction inhibitory concentration index (FICI) of 0.375 and 0.5, respectively. It demonstrated that the combination of ɛ-PL and Car significantly inhibited the growth of the two strains compared to single treatment. Furthermore, the mode of action of ɛ-PL (6.25 μg/mL) or Car (80 μg/mL) in inhibiting E. coli and S. aureus was researched by assessing their changes with regard to cellular membrane integrity, membrane permeability, respiratory activity, and membrane structure. A combination of ɛ-PL and Car increased the damage to cell membranes and their permeability and led to the release of 260 nm absorbing materials, decreased respiratory-chain dehydrogenase activity compared with ɛ-PL or Car treatment alone. These results demonstrated that the combination of ɛ-PL and Car could be used as a new promising naturally sourced food preservative.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synergistic antibacterial effects of carvacrol and ε-polylysine\",\"authors\":\"Lu Gao, Yuan Hu, Meidan Sun, Xiang-feng Zheng, Ming Yang, Shengqi Rao\",\"doi\":\"10.15586/qas.v13i4.928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to evaluate the antimicrobial efficacy of the combination of ɛ-polylysine (ɛ-PL) and carvacrol (Car) against foodborne pathogens, Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of ɛ-PL (Car) against E. coli and S. aureus were 25 μg/mL (320 μg/mL) and 12.5 μg/mL (320 μg/mL), respectively. Checkerboard assays showed that the combination of ɛ-PL and Car exerted synergistic effects against E. coli and S. aureus with fraction inhibitory concentration index (FICI) of 0.375 and 0.5, respectively. It demonstrated that the combination of ɛ-PL and Car significantly inhibited the growth of the two strains compared to single treatment. Furthermore, the mode of action of ɛ-PL (6.25 μg/mL) or Car (80 μg/mL) in inhibiting E. coli and S. aureus was researched by assessing their changes with regard to cellular membrane integrity, membrane permeability, respiratory activity, and membrane structure. A combination of ɛ-PL and Car increased the damage to cell membranes and their permeability and led to the release of 260 nm absorbing materials, decreased respiratory-chain dehydrogenase activity compared with ɛ-PL or Car treatment alone. These results demonstrated that the combination of ɛ-PL and Car could be used as a new promising naturally sourced food preservative.\",\"PeriodicalId\":20868,\"journal\":{\"name\":\"Quality Assurance and Safety of Crops & Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Assurance and Safety of Crops & Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/qas.v13i4.928\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Assurance and Safety of Crops & Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/qas.v13i4.928","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Synergistic antibacterial effects of carvacrol and ε-polylysine
This study aimed to evaluate the antimicrobial efficacy of the combination of ɛ-polylysine (ɛ-PL) and carvacrol (Car) against foodborne pathogens, Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentrations (MICs) of ɛ-PL (Car) against E. coli and S. aureus were 25 μg/mL (320 μg/mL) and 12.5 μg/mL (320 μg/mL), respectively. Checkerboard assays showed that the combination of ɛ-PL and Car exerted synergistic effects against E. coli and S. aureus with fraction inhibitory concentration index (FICI) of 0.375 and 0.5, respectively. It demonstrated that the combination of ɛ-PL and Car significantly inhibited the growth of the two strains compared to single treatment. Furthermore, the mode of action of ɛ-PL (6.25 μg/mL) or Car (80 μg/mL) in inhibiting E. coli and S. aureus was researched by assessing their changes with regard to cellular membrane integrity, membrane permeability, respiratory activity, and membrane structure. A combination of ɛ-PL and Car increased the damage to cell membranes and their permeability and led to the release of 260 nm absorbing materials, decreased respiratory-chain dehydrogenase activity compared with ɛ-PL or Car treatment alone. These results demonstrated that the combination of ɛ-PL and Car could be used as a new promising naturally sourced food preservative.
期刊介绍:
''Quality Assurance and Safety of Crops & Foods'' is an international peer-reviewed journal publishing research and review papers associated with the quality and safety of food and food sources including cereals, grains, oilseeds, fruits, root crops and animal sources. It targets both primary materials and their conversion to human foods. There is a strong focus on the development and application of new analytical tools and their potential for quality assessment, assurance, control and safety. The scope includes issues of risk assessment, traceability, authenticity, food security and socio-economic impacts. Manuscripts presenting novel data and information that are likely to significantly contribute to scientific knowledge in areas of food quality and safety will be considered.
''Quality Assurance and Safety of Crops & Foods'' provides a forum for all those working in the specialist field of food quality and safety to report on the progress and outcomes of their research.