欧洲山毛榉和苏格兰松焊接结合线的水蒸气吸附

IF 2.2 3区 农林科学 Q2 FORESTRY
Holzforschung Pub Date : 2023-05-26 DOI:10.1515/hf-2022-0012
M. Vaziri, Christopher H. Dreimol, Lars Abrahamsson, P. Niemz, D. Sandberg
{"title":"欧洲山毛榉和苏格兰松焊接结合线的水蒸气吸附","authors":"M. Vaziri, Christopher H. Dreimol, Lars Abrahamsson, P. Niemz, D. Sandberg","doi":"10.1515/hf-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract The wood–water interactions of welded bond-lines of European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) were in this paper studied for the first time with dynamic vapour sorption equipment. The aim of this study was to characterize the water sorption in the welded bond-line and to define to which extent it deviates from water sorption of the unwelded wood. The objective was to provide deepened knowledge about water sorption of the welded bond-line, which could be used to improve the moisture resistance of welded wood in the future. The welded wood generally had lower equilibrium moisture contents than the unwelded wood. The welded bond-lines of beech and pine showed greater hysteresis than the unwelded wood from 0 to 55 % relative humidity. All specimens showed faster adsorption than desorption. However, the welded wood showed slower adsorption but faster desorption than unwelded wood. The time to complete half of the fractional change in moisture content (E(t) = 0.5) increased as the moisture content increased. The adsorption diffusion coefficients of beech and welded beech were higher than those of pine and welded pine up to 50 % and 40 % RH, respectively. In desorption, pine had a higher diffusion coefficient than beech in the whole range of 85–0 % RH. Analogously, welded pine had a higher diffusion coefficient than welded beech in the range of 85–5 % RH. In contrast to the desorption, the welded wood always had lower adsorption diffusion coefficients than the corresponding unwelded wood. The diffusion coefficients showed irregular patterns in some ranges of the RH. Therefore, it was hard to make a clear conclusion about the water-sorption behaviour of the specimens based on the defined diffusion coefficients.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"77 1","pages":"500 - 514"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Water-vapour sorption of welded bond-line of European beech and Scots pine\",\"authors\":\"M. Vaziri, Christopher H. Dreimol, Lars Abrahamsson, P. Niemz, D. Sandberg\",\"doi\":\"10.1515/hf-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The wood–water interactions of welded bond-lines of European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) were in this paper studied for the first time with dynamic vapour sorption equipment. The aim of this study was to characterize the water sorption in the welded bond-line and to define to which extent it deviates from water sorption of the unwelded wood. The objective was to provide deepened knowledge about water sorption of the welded bond-line, which could be used to improve the moisture resistance of welded wood in the future. The welded wood generally had lower equilibrium moisture contents than the unwelded wood. The welded bond-lines of beech and pine showed greater hysteresis than the unwelded wood from 0 to 55 % relative humidity. All specimens showed faster adsorption than desorption. However, the welded wood showed slower adsorption but faster desorption than unwelded wood. The time to complete half of the fractional change in moisture content (E(t) = 0.5) increased as the moisture content increased. The adsorption diffusion coefficients of beech and welded beech were higher than those of pine and welded pine up to 50 % and 40 % RH, respectively. In desorption, pine had a higher diffusion coefficient than beech in the whole range of 85–0 % RH. Analogously, welded pine had a higher diffusion coefficient than welded beech in the range of 85–5 % RH. In contrast to the desorption, the welded wood always had lower adsorption diffusion coefficients than the corresponding unwelded wood. The diffusion coefficients showed irregular patterns in some ranges of the RH. Therefore, it was hard to make a clear conclusion about the water-sorption behaviour of the specimens based on the defined diffusion coefficients.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\"77 1\",\"pages\":\"500 - 514\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2022-0012\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2022-0012","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文首次用动态蒸汽吸附设备研究了欧洲山毛榉(Fagus sylvatica L.)和苏格兰松(Pinus sylvestris L.)焊接结合线的木-水相互作用。本研究的目的是表征焊接结合线中的吸水性,并确定其与未焊接木材的吸水性的偏离程度。目的是加深对焊接结合线吸水性的了解,这可用于提高未来焊接木材的防潮性。焊接木材通常具有比未焊接木材更低的平衡水分含量。从0到55,山毛榉和松木的焊接结合线比未焊接的木材表现出更大的滞后性 % 相对湿度。所有样品都表现出比解吸更快的吸附。然而,与未焊接木材相比,焊接木材表现出较慢的吸附但较快的解吸。完成水分含量分数变化的一半的时间(E(t)=0.5)随着水分含量的增加而增加。山毛榉和杉木的吸附扩散系数比松木和杉木高达50 % 和40 % RH。在解吸过程中,松树的扩散系数在85–0的整个范围内都高于山毛榉 % RH。类似地,在85–5的范围内,焊接松木的扩散系数高于焊接山毛榉 % RH。与解吸相反,焊接木材的吸附扩散系数总是低于相应的未焊接木材。扩散系数在相对湿度的某些范围内表现出不规则的模式。因此,很难根据定义的扩散系数对试样的吸水行为做出明确的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water-vapour sorption of welded bond-line of European beech and Scots pine
Abstract The wood–water interactions of welded bond-lines of European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) were in this paper studied for the first time with dynamic vapour sorption equipment. The aim of this study was to characterize the water sorption in the welded bond-line and to define to which extent it deviates from water sorption of the unwelded wood. The objective was to provide deepened knowledge about water sorption of the welded bond-line, which could be used to improve the moisture resistance of welded wood in the future. The welded wood generally had lower equilibrium moisture contents than the unwelded wood. The welded bond-lines of beech and pine showed greater hysteresis than the unwelded wood from 0 to 55 % relative humidity. All specimens showed faster adsorption than desorption. However, the welded wood showed slower adsorption but faster desorption than unwelded wood. The time to complete half of the fractional change in moisture content (E(t) = 0.5) increased as the moisture content increased. The adsorption diffusion coefficients of beech and welded beech were higher than those of pine and welded pine up to 50 % and 40 % RH, respectively. In desorption, pine had a higher diffusion coefficient than beech in the whole range of 85–0 % RH. Analogously, welded pine had a higher diffusion coefficient than welded beech in the range of 85–5 % RH. In contrast to the desorption, the welded wood always had lower adsorption diffusion coefficients than the corresponding unwelded wood. The diffusion coefficients showed irregular patterns in some ranges of the RH. Therefore, it was hard to make a clear conclusion about the water-sorption behaviour of the specimens based on the defined diffusion coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信