在格罗莫夫-维特班上

IF 0.5 4区 数学 Q3 MATHEMATICS
Hsian-Hua Tseng
{"title":"在格罗莫夫-维特班上","authors":"Hsian-Hua Tseng","doi":"10.4171/pm/2090","DOIUrl":null,"url":null,"abstract":"ev : Kg,n(X , d) → ĪX , where ĪX is the rigidified inertia stack of X . See [3, Section 3] for a detailed discussion on inertia stacks and [3, Section 4.4] for the construction of evaluation maps. (2) Forgetting stable maps to X but only retaining the domain curves yields the forgetful map π : Kg,n(X , d) → M tw g,n, where M g,n is the stack of n-pointed genus g orbifold curves, see [19, Theorem 1.9]. Assuming 2g − 2 + n > 0, then passing to coarse curves and stablizing the domains yield another forgetful map p : Kg,n(X , d) → Mg,n, where Mg,n is the stack of n-pointed genus g stable curves. There is an obvious commutative diagram Kg,n(X , d)","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On orbifold Gromov–Witten classes\",\"authors\":\"Hsian-Hua Tseng\",\"doi\":\"10.4171/pm/2090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ev : Kg,n(X , d) → ĪX , where ĪX is the rigidified inertia stack of X . See [3, Section 3] for a detailed discussion on inertia stacks and [3, Section 4.4] for the construction of evaluation maps. (2) Forgetting stable maps to X but only retaining the domain curves yields the forgetful map π : Kg,n(X , d) → M tw g,n, where M g,n is the stack of n-pointed genus g orbifold curves, see [19, Theorem 1.9]. Assuming 2g − 2 + n > 0, then passing to coarse curves and stablizing the domains yield another forgetful map p : Kg,n(X , d) → Mg,n, where Mg,n is the stack of n-pointed genus g stable curves. There is an obvious commutative diagram Kg,n(X , d)\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2090\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

ev: Kg,n(X, d)→ĪX,其中ĪX为X的刚性惯性叠加。关于惯性堆栈的详细讨论请参见[3,第3节],关于评估图的构造请参见[3,第4.4节]。(2)遗忘到X的稳定映射但只保留域曲线,得到遗忘映射π: Kg,n(X, d)→M tw g,n,其中M g,n是n点格g轨道曲线的叠加,见[19,定理1.9]。假设2g−2 + n > 0,然后传递到粗曲线并稳定区域,得到另一个容易忘记的映射p: Kg,n(X, d)→Mg,n,其中Mg,n是n点g稳定曲线的堆栈。有一个明显的交换图Kg,n(X, d)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On orbifold Gromov–Witten classes
ev : Kg,n(X , d) → ĪX , where ĪX is the rigidified inertia stack of X . See [3, Section 3] for a detailed discussion on inertia stacks and [3, Section 4.4] for the construction of evaluation maps. (2) Forgetting stable maps to X but only retaining the domain curves yields the forgetful map π : Kg,n(X , d) → M tw g,n, where M g,n is the stack of n-pointed genus g orbifold curves, see [19, Theorem 1.9]. Assuming 2g − 2 + n > 0, then passing to coarse curves and stablizing the domains yield another forgetful map p : Kg,n(X , d) → Mg,n, where Mg,n is the stack of n-pointed genus g stable curves. There is an obvious commutative diagram Kg,n(X , d)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信