使用基于脑电图的连接特征和卷积神经网络评估意识受损

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-06-01 Epub Date: 2023-03-01 DOI:10.1007/s11571-023-09944-0
Lihui Cai, Xile Wei, Yang Qing, Meili Lu, Guosheng Yi, Jiang Wang, Yueqing Dong
{"title":"使用基于脑电图的连接特征和卷积神经网络评估意识受损","authors":"Lihui Cai, Xile Wei, Yang Qing, Meili Lu, Guosheng Yi, Jiang Wang, Yueqing Dong","doi":"10.1007/s11571-023-09944-0","DOIUrl":null,"url":null,"abstract":"<p><p>Growing electroencephalogram (EEG) studies have linked the abnormities of functional brain networks with disorders of consciousness (DOC). However, due to network data's high-dimensional and non-Euclidean properties, it is difficult to exploit the brain connectivity information that can effectively detect the consciousness levels of DOC patients via deep learning. To take maximum advantage of network information in assessing impaired consciousness, we utilized the functional connectivity with convolutional neural network (CNN) and employed three rearrangement schemes to improve the evaluation performance of brain networks. In addition, the gradient-weighted class activation mapping (Grad-CAM) was adopted to visualize the classification contributions of connections among different areas. We demonstrated that the classification performance was significantly enhanced by applying network rearrangement techniques compared to those obtained by the original connectivity matrix (with an accuracy of 75.0%). The highest classification accuracy (87.2%) was achieved by rearranging the alpha network based on the anatomical regions. The inter-region connections (i.e., frontal-parietal and frontal-occipital connectivity) played dominant roles in the classification of patients with different consciousness states. The effectiveness of functional connectivity in revealing individual differences in brain activity was further validated by the correlation between behavioral performance and connections among specific regions. These findings suggest that our proposed assessment model could detect the residual consciousness of patients.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of impaired consciousness using EEG-based connectivity features and convolutional neural networks.\",\"authors\":\"Lihui Cai, Xile Wei, Yang Qing, Meili Lu, Guosheng Yi, Jiang Wang, Yueqing Dong\",\"doi\":\"10.1007/s11571-023-09944-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing electroencephalogram (EEG) studies have linked the abnormities of functional brain networks with disorders of consciousness (DOC). However, due to network data's high-dimensional and non-Euclidean properties, it is difficult to exploit the brain connectivity information that can effectively detect the consciousness levels of DOC patients via deep learning. To take maximum advantage of network information in assessing impaired consciousness, we utilized the functional connectivity with convolutional neural network (CNN) and employed three rearrangement schemes to improve the evaluation performance of brain networks. In addition, the gradient-weighted class activation mapping (Grad-CAM) was adopted to visualize the classification contributions of connections among different areas. We demonstrated that the classification performance was significantly enhanced by applying network rearrangement techniques compared to those obtained by the original connectivity matrix (with an accuracy of 75.0%). The highest classification accuracy (87.2%) was achieved by rearranging the alpha network based on the anatomical regions. The inter-region connections (i.e., frontal-parietal and frontal-occipital connectivity) played dominant roles in the classification of patients with different consciousness states. The effectiveness of functional connectivity in revealing individual differences in brain activity was further validated by the correlation between behavioral performance and connections among specific regions. These findings suggest that our proposed assessment model could detect the residual consciousness of patients.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09944-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09944-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的脑电图(EEG)研究将大脑功能网络的异常与意识障碍(DOC)联系起来。然而,由于网络数据的高维和非欧几里得特性,很难利用脑连接信息通过深度学习有效检测意识障碍(DOC)患者的意识水平。为了最大限度地利用网络信息评估意识受损情况,我们利用卷积神经网络(CNN)的功能连接性,并采用三种重排方案来提高脑网络的评估性能。此外,我们还采用了梯度加权类激活图谱(Grad-CAM)来可视化不同区域间连接的分类贡献。结果表明,与原始连接矩阵相比,应用网络重排技术能显著提高分类性能(准确率为 75.0%)。根据解剖区域重新排列阿尔法网络的分类准确率最高(87.2%)。在对不同意识状态的患者进行分类时,区域间连接(即额叶-顶叶连接和额叶-枕叶连接)发挥了主导作用。行为表现与特定区域连接之间的相关性进一步验证了功能连接在揭示大脑活动个体差异方面的有效性。这些研究结果表明,我们提出的评估模型可以检测出患者的残余意识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of impaired consciousness using EEG-based connectivity features and convolutional neural networks.

Growing electroencephalogram (EEG) studies have linked the abnormities of functional brain networks with disorders of consciousness (DOC). However, due to network data's high-dimensional and non-Euclidean properties, it is difficult to exploit the brain connectivity information that can effectively detect the consciousness levels of DOC patients via deep learning. To take maximum advantage of network information in assessing impaired consciousness, we utilized the functional connectivity with convolutional neural network (CNN) and employed three rearrangement schemes to improve the evaluation performance of brain networks. In addition, the gradient-weighted class activation mapping (Grad-CAM) was adopted to visualize the classification contributions of connections among different areas. We demonstrated that the classification performance was significantly enhanced by applying network rearrangement techniques compared to those obtained by the original connectivity matrix (with an accuracy of 75.0%). The highest classification accuracy (87.2%) was achieved by rearranging the alpha network based on the anatomical regions. The inter-region connections (i.e., frontal-parietal and frontal-occipital connectivity) played dominant roles in the classification of patients with different consciousness states. The effectiveness of functional connectivity in revealing individual differences in brain activity was further validated by the correlation between behavioral performance and connections among specific regions. These findings suggest that our proposed assessment model could detect the residual consciousness of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信