电纺丝纤维PVDF/CTAB膜的压电、光催化和压电光催化活性

Q4 Materials Science
A. Rabadanova, M. Abdurakhmanov, R. Gulakhmedov, A. Shuaibov, D. Selimov, D. Sobola, K. Částková, Shikhgasan Ramazanov, F. Orudzhev
{"title":"电纺丝纤维PVDF/CTAB膜的压电、光催化和压电光催化活性","authors":"A. Rabadanova, M. Abdurakhmanov, R. Gulakhmedov, A. Shuaibov, D. Selimov, D. Sobola, K. Částková, Shikhgasan Ramazanov, F. Orudzhev","doi":"10.15826/chimtech.2022.9.4.20","DOIUrl":null,"url":null,"abstract":"A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane\",\"authors\":\"A. Rabadanova, M. Abdurakhmanov, R. Gulakhmedov, A. Shuaibov, D. Selimov, D. Sobola, K. Částková, Shikhgasan Ramazanov, F. Orudzhev\",\"doi\":\"10.15826/chimtech.2022.9.4.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2022.9.4.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2022.9.4.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 8

摘要

采用同轴静电纺丝法合成了十六烷基三甲基溴化铵(CTAB)改性聚偏氟乙烯(PVDF)纳米纤维复合材料。通过SEM、FTIR光谱、X射线衍射分析、XPS研究了材料的形貌和结构,并研究了有机染料亚甲基蓝(MB)分解过程中的压光和压光催化活性。结果表明,由于离子-偶极相互作用,CTAB的加入促进了PVDF结构的额外极化。首次表明,CTAB的加入促进了宽间隙介电聚合物PVDF的光敏性(带隙大于6eV)。结果表明,光催化分解效率在60分钟内达到91%。该材料表现出压电催化活性——在60分钟内达到73%。捕获活性氧化形式的实验已经证实OH羟基自由基在光催化过程中起主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane
A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信