不对称无缓冲电流馈送全桥隔离DC-DC转换器

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
R. Kosenko, A. Blinov, D. Vinnikov, A. Chub
{"title":"不对称无缓冲电流馈送全桥隔离DC-DC转换器","authors":"R. Kosenko, A. Blinov, D. Vinnikov, A. Chub","doi":"10.2478/ecce-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents two isolated current-fed fullbridge DC-DC converters that can be used to interface a lower voltage source into a DC bus of higher voltage. The first topology uses a resonant circuit to force current redistribution between low-voltage-side transistors and a passive rectifier. The second topology utilizes an active rectifier with secondary modulation to achieve the same goal. The resonant circuit can be formed by using transformer leakage inductance and the parasitic capacitances of the switches. The converters feature soft switching of semiconductors over a wide range of operating conditions. This is achieved with decreased energy circulation when compared to existing topologies with symmetric control and with fewer semiconductors than in those with phase-shift control. The topologies can be implemented in renewable, supercapacitor, battery, fuel cell, and DC microgrid applications. Steady-state operation and design aspects of the converters are presented and verified experimentally with 400 W prototypes","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"14 1","pages":"11 - 5"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymmetric snubberless current-fed full-bridge isolated DC-DC converters\",\"authors\":\"R. Kosenko, A. Blinov, D. Vinnikov, A. Chub\",\"doi\":\"10.2478/ecce-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents two isolated current-fed fullbridge DC-DC converters that can be used to interface a lower voltage source into a DC bus of higher voltage. The first topology uses a resonant circuit to force current redistribution between low-voltage-side transistors and a passive rectifier. The second topology utilizes an active rectifier with secondary modulation to achieve the same goal. The resonant circuit can be formed by using transformer leakage inductance and the parasitic capacitances of the switches. The converters feature soft switching of semiconductors over a wide range of operating conditions. This is achieved with decreased energy circulation when compared to existing topologies with symmetric control and with fewer semiconductors than in those with phase-shift control. The topologies can be implemented in renewable, supercapacitor, battery, fuel cell, and DC microgrid applications. Steady-state operation and design aspects of the converters are presented and verified experimentally with 400 W prototypes\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"14 1\",\"pages\":\"11 - 5\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ecce-2018-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文介绍了两个隔离的电流馈电全桥DC-DC转换器,可用于将较低电压源连接到较高电压的DC总线。第一种拓扑结构使用谐振电路来强制在低压侧晶体管和无源整流器之间重新分配电流。第二种拓扑结构利用具有次级调制的有源整流器来实现相同的目标。谐振电路可以通过使用变压器漏电感和开关的寄生电容来形成。转换器的特点是在各种操作条件下对半导体进行软开关。与具有对称控制的现有拓扑结构相比,这是通过减少能量循环来实现的,并且与具有相移控制的拓扑结构相比具有更少的半导体。该拓扑结构可用于可再生能源、超级电容器、电池、燃料电池和直流微电网应用。介绍了转换器的稳态运行和设计方面,并用400W原型进行了实验验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric snubberless current-fed full-bridge isolated DC-DC converters
Abstract This paper presents two isolated current-fed fullbridge DC-DC converters that can be used to interface a lower voltage source into a DC bus of higher voltage. The first topology uses a resonant circuit to force current redistribution between low-voltage-side transistors and a passive rectifier. The second topology utilizes an active rectifier with secondary modulation to achieve the same goal. The resonant circuit can be formed by using transformer leakage inductance and the parasitic capacitances of the switches. The converters feature soft switching of semiconductors over a wide range of operating conditions. This is achieved with decreased energy circulation when compared to existing topologies with symmetric control and with fewer semiconductors than in those with phase-shift control. The topologies can be implemented in renewable, supercapacitor, battery, fuel cell, and DC microgrid applications. Steady-state operation and design aspects of the converters are presented and verified experimentally with 400 W prototypes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信