一类正基代数的表示

IF 0.4 4区 数学 Q4 MATHEMATICS
Shiou-Yi Lin, Shilin Yang
{"title":"一类正基代数的表示","authors":"Shiou-Yi Lin, Shilin Yang","doi":"10.21136/CMJ.2023.0254-22","DOIUrl":null,"url":null,"abstract":"We investigate the representation theory of the positively based algebra Am,d, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that Am,d is of finite representative type if d ⩽ 4, of tame type if d = 5, and of wild type if d ⩾ 6. In the case when d ⩽ 4, all indecomposable representations of Am,d are constructed. Furthermore, their right cell representations as well as left cell representations of Am,d are described.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"811 - 838"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Representations of a class of positively based algebras\",\"authors\":\"Shiou-Yi Lin, Shilin Yang\",\"doi\":\"10.21136/CMJ.2023.0254-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the representation theory of the positively based algebra Am,d, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that Am,d is of finite representative type if d ⩽ 4, of tame type if d = 5, and of wild type if d ⩾ 6. In the case when d ⩽ 4, all indecomposable representations of Am,d are constructed. Furthermore, their right cell representations as well as left cell representations of Am,d are described.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"811 - 838\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0254-22\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0254-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了正基代数Am,d的表示理论,它是弱Hopf代数的非对易Green代数的推广,对应于广义Taft代数。结果表明,如果d⩽4,Am,d是有限代表型,如果d=5,Am是驯服型,如果d⩾6,Am为野生型。在d⩽4的情况下,构造了Am,d的所有不可分解表示。此外,描述了它们的Am,d的右单元表示以及左单元表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of a class of positively based algebras
We investigate the representation theory of the positively based algebra Am,d, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that Am,d is of finite representative type if d ⩽ 4, of tame type if d = 5, and of wild type if d ⩾ 6. In the case when d ⩽ 4, all indecomposable representations of Am,d are constructed. Furthermore, their right cell representations as well as left cell representations of Am,d are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信