Shou Peng, Wei Wang, Tingting Yao, Min Guan, Zhiping Gan, Jingyuan Chu, Linlin Gai
{"title":"镓掺杂ZnO薄膜作为薄膜太阳能电池透明电极的优良性能","authors":"Shou Peng, Wei Wang, Tingting Yao, Min Guan, Zhiping Gan, Jingyuan Chu, Linlin Gai","doi":"10.1111/ijag.16585","DOIUrl":null,"url":null,"abstract":"<p>Optical and electrical properties of transparent electrode are directly related to the photoelectric conversion efficiency of thin-film solar cells. For this reason, Ga and Al-doped ZnO (GZO and AZO) transparent conducting films were fabricated on float glass through the magnetic sputtering technique. Compared with AZO films, GZO films show a higher figure of merit (FoM) value indicating their outstanding optical and electrical properties. The smaller difference of ionic radius between Ga<sup>3+</sup> and Zn<sup>2+</sup> than Al<sup>3+</sup> and Zn<sup>2+</sup> contributes to high carrier concentration and electron mobility of GZO films. In addition, it has been shown that GZO films can be stable at high substrate temperatures. After being annealed at 550°C in N<sub>2</sub> atmosphere, the FoM value of GZO films is twice as much as that of FTO films, indicating that GZO can be applied as the front contact material not only in CIGS thin-film solar cells, but also in CdTe thin-film solar cells.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 1","pages":"133-139"},"PeriodicalIF":2.1000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Excellent properties of Ga-doped ZnO film as an alternative transparent electrode for thin-film solar cells\",\"authors\":\"Shou Peng, Wei Wang, Tingting Yao, Min Guan, Zhiping Gan, Jingyuan Chu, Linlin Gai\",\"doi\":\"10.1111/ijag.16585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical and electrical properties of transparent electrode are directly related to the photoelectric conversion efficiency of thin-film solar cells. For this reason, Ga and Al-doped ZnO (GZO and AZO) transparent conducting films were fabricated on float glass through the magnetic sputtering technique. Compared with AZO films, GZO films show a higher figure of merit (FoM) value indicating their outstanding optical and electrical properties. The smaller difference of ionic radius between Ga<sup>3+</sup> and Zn<sup>2+</sup> than Al<sup>3+</sup> and Zn<sup>2+</sup> contributes to high carrier concentration and electron mobility of GZO films. In addition, it has been shown that GZO films can be stable at high substrate temperatures. After being annealed at 550°C in N<sub>2</sub> atmosphere, the FoM value of GZO films is twice as much as that of FTO films, indicating that GZO can be applied as the front contact material not only in CIGS thin-film solar cells, but also in CdTe thin-film solar cells.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 1\",\"pages\":\"133-139\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16585\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16585","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Excellent properties of Ga-doped ZnO film as an alternative transparent electrode for thin-film solar cells
Optical and electrical properties of transparent electrode are directly related to the photoelectric conversion efficiency of thin-film solar cells. For this reason, Ga and Al-doped ZnO (GZO and AZO) transparent conducting films were fabricated on float glass through the magnetic sputtering technique. Compared with AZO films, GZO films show a higher figure of merit (FoM) value indicating their outstanding optical and electrical properties. The smaller difference of ionic radius between Ga3+ and Zn2+ than Al3+ and Zn2+ contributes to high carrier concentration and electron mobility of GZO films. In addition, it has been shown that GZO films can be stable at high substrate temperatures. After being annealed at 550°C in N2 atmosphere, the FoM value of GZO films is twice as much as that of FTO films, indicating that GZO can be applied as the front contact material not only in CIGS thin-film solar cells, but also in CdTe thin-film solar cells.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.