{"title":"单倍体遗传算法与二倍体遗传算法的比较研究","authors":"A. Petrovan, Oliviu Matei, P. Pop","doi":"10.37193/cjm.2023.02.08","DOIUrl":null,"url":null,"abstract":"In this paper, we make a comprehensive comparison in terms of the quality of the achieved solutions, the corresponding execution time and impact of the genetic operators on the quality of the results between the Haploid Genetic Algorithms (HGAs) and Diploid Genetic Algorithms (DGAs). The standard genetic algorithms, referred to in our paper as HGAs are characterized by the fact that they are using a haploid representation relating an individual with a chromosome, while the DGAs are using diploid individuals which are made of two chromosomes corresponding to the dominant and recessive genes. Even though the general opinion is that DGAs do not provide much benefit as compared to classical GAs, based on extensive computational experiments, we do show that the DGAs are robust, have a high degree of consistency and perform better, sometimes almost twice as well, than the HGAs, but are slower due to the high number of operations to be performed, caused by the duplication of the genetic information. However, the quality of the solutions achieved by the DGAs compensate their relative high execution time. The better quality of the DGAs, proving the efficiency of using diploid genes, is given by the homogeneity of the population which covers the search space thoroughly and in this way being capable of avoiding the local optima.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study between Haploid Genetic Algorithms and Diploid Genetic Algorithms\",\"authors\":\"A. Petrovan, Oliviu Matei, P. Pop\",\"doi\":\"10.37193/cjm.2023.02.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we make a comprehensive comparison in terms of the quality of the achieved solutions, the corresponding execution time and impact of the genetic operators on the quality of the results between the Haploid Genetic Algorithms (HGAs) and Diploid Genetic Algorithms (DGAs). The standard genetic algorithms, referred to in our paper as HGAs are characterized by the fact that they are using a haploid representation relating an individual with a chromosome, while the DGAs are using diploid individuals which are made of two chromosomes corresponding to the dominant and recessive genes. Even though the general opinion is that DGAs do not provide much benefit as compared to classical GAs, based on extensive computational experiments, we do show that the DGAs are robust, have a high degree of consistency and perform better, sometimes almost twice as well, than the HGAs, but are slower due to the high number of operations to be performed, caused by the duplication of the genetic information. However, the quality of the solutions achieved by the DGAs compensate their relative high execution time. The better quality of the DGAs, proving the efficiency of using diploid genes, is given by the homogeneity of the population which covers the search space thoroughly and in this way being capable of avoiding the local optima.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.02.08\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.02.08","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Comparative Study between Haploid Genetic Algorithms and Diploid Genetic Algorithms
In this paper, we make a comprehensive comparison in terms of the quality of the achieved solutions, the corresponding execution time and impact of the genetic operators on the quality of the results between the Haploid Genetic Algorithms (HGAs) and Diploid Genetic Algorithms (DGAs). The standard genetic algorithms, referred to in our paper as HGAs are characterized by the fact that they are using a haploid representation relating an individual with a chromosome, while the DGAs are using diploid individuals which are made of two chromosomes corresponding to the dominant and recessive genes. Even though the general opinion is that DGAs do not provide much benefit as compared to classical GAs, based on extensive computational experiments, we do show that the DGAs are robust, have a high degree of consistency and perform better, sometimes almost twice as well, than the HGAs, but are slower due to the high number of operations to be performed, caused by the duplication of the genetic information. However, the quality of the solutions achieved by the DGAs compensate their relative high execution time. The better quality of the DGAs, proving the efficiency of using diploid genes, is given by the homogeneity of the population which covers the search space thoroughly and in this way being capable of avoiding the local optima.
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.