加纳部分乳木属原位种质资源遗传多样性的阐明

IF 3.3 2区 农林科学 Q1 AGRONOMY
W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah
{"title":"加纳部分乳木属原位种质资源遗传多样性的阐明","authors":"W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah","doi":"10.3390/agronomy13092256","DOIUrl":null,"url":null,"abstract":"Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of the Genetic Diversity within Some In Situ Shea Germplasm in Ghana\",\"authors\":\"W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah\",\"doi\":\"10.3390/agronomy13092256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092256\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092256","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

乳木果是一种农林业树种,主要以其丰富的黄油而闻名,其中含有硬脂素和生育酚,并具有紫外线吸收特性;它被用于烹饪、身体护理和传统药物。然而,这种树是未经栽培的,农村居民对其坚果的采集受到城市化加剧、随之而来的土地使用压力和农村家庭对薪柴的需求的威胁。世界范围内对乳木果产品的需求也在增加,因此需要制定乳木果改良战略。这一改良计划的顶点是种质的收集、鉴定、保存和利用的需要。为了在受气候变化威胁的牛油果种群不断减少的情况下保护优质牛油果材料,有必要开发以已知性状为重点的基于遗传和表型变异代表的牛油果种质资源库。本研究的目的是对282份乳木果种质资源进行评价,确定所收集材料的遗传多样性,为今后的收集和作物改良策略提供信息。利用叶片性状对所选材料进行区分和分组。叶长16.83 ~ 30.85 cm,叶片长12.28 ~ 20.68 cm。叶柄长为5.53 ~ 10.2 cm,叶柄比为1.41 ~ 2.69。相关研究表明,采伐纬度与所测叶片性状呈显著负相关。叶片长与叶柄长(0.57)、叶片长与总叶长(0.87)、叶柄长与宽(0.49)呈极显著正相关。根据所研究的形态描述符,收集到的材料90%分为两类。采用三种不同的方法基于单核苷酸多态性标记(SNP)对材料进行遗传分析。根据生成的snp构建系统发育树;这将材料分成三组,并有不同的子组。主坐标分析还产生了三个不同的组,分组不是基于地理区域的收集。主成分判别分析(DAPC)也证实了三组。遗传多样性极低(Hs) = 0.0406,表明群体内存在潜在的近交。综上所述,地点内的差异大于地点之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidation of the Genetic Diversity within Some In Situ Shea Germplasm in Ghana
Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信