W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah
{"title":"加纳部分乳木属原位种质资源遗传多样性的阐明","authors":"W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah","doi":"10.3390/agronomy13092256","DOIUrl":null,"url":null,"abstract":"Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of the Genetic Diversity within Some In Situ Shea Germplasm in Ghana\",\"authors\":\"W. E. Anyomi, M. Barnor, J. Eleblu, A. Danquah, S. Avicor, K. Ofori, I. Hale, F. Padi, E. Danquah\",\"doi\":\"10.3390/agronomy13092256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092256\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092256","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Elucidation of the Genetic Diversity within Some In Situ Shea Germplasm in Ghana
Shea is an agroforestry tree species known primarily for its rich butter, which contains stearin and tocopherol, and has ultraviolet ray absorption property; it is used in cooking, body care and traditional medicines. This tree is, however, uncultivated and collection of its nuts by rural dwellers is threatened by increased urbanization with its accompanying land use pressure and the need for fuel wood for rural households. There is also increased demand for shea products worldwide necessitating the need for shea improvement strategies. At the apex of this improvement program lies the need for germplasm collection, characterization, conservation and utilization. In order to conserve elite shea materials amidst dwindling shea populations threatened by climate change, there is a need to develop shea germplasm banks based on the representation of genetic and phenotypic variation focusing on known traits. The objective of the study was to evaluate 282 shea accessions for germplasm conservation and to determine the genetic diversity of the collected materials to inform future collections and drive crop improvement strategies. Leaf traits were used to differentiate and group the selected materials. Leaf length ranged between 16.83 cm and 30.85 cm, and leaf blade length ranged between 12.28 cm and 20.68 cm. Petiole length varied between 5.53 cm and 10.2 cm and the blade to petiole ratio was from 1.41 to 2.69. Correlation studies revealed significant negative correlation between the latitude of collection and all leaf traits measured. There was significant positive correlation between blade length and petiole length (0.57), blade length and total leaf length (0.87) and petiole length and breadth (0.49). The collected materials were grouped at 90% into two, based on the morphological descriptors studied. Three different approaches were employed to genetically analyze the materials based on single nucleotide polymorphic markers (SNP). A phylogenetic tree was constructed based on the SNPs generated; this grouped the materials into three, with various subgroups. Principal coordinate analysis also produced three distinct groups with groupings not based on geographical area of collection. Discriminant analysis of principal components (DAPC) also confirmed three groupings. The genetic diversity of the collection was very low (Hs) = 0.0406, which is an indication of potential inbreeding within the shea populations. To conclude, there was higher variation within locations than between locations.
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.