基因组学和基因编辑技术加速粮食产品创新

Q3 Agricultural and Biological Sciences
R. Henry
{"title":"基因组学和基因编辑技术加速粮食产品创新","authors":"R. Henry","doi":"10.1094/cfw-64-6-0066","DOIUrl":null,"url":null,"abstract":"Rapid advances in genomics technology have continued over the last few years. The ability to edit plant genes has been enabled by the development of clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) and related technologies. The continuing improvements in DNA sequencing technology have complemented these new technologies by facilitating efficient and very specific targeting of genetic changes to specific genes and traits. Plant breeding can now move beyond marker-assisted breeding and genetic modification technologies to more complete and planned genetic improvements. Grain crops, in particular, are likely to benefit from increased rates of genetic gain. The genetic basis of grain characteristics will be more easily determined, resulting in new opportunities to improve grain quality and innovate in the development of new traits. Product traceability and identity preservation will also be enhanced by these technologies.","PeriodicalId":50707,"journal":{"name":"Cereal Foods World","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genomics and Gene-Editing Technologies Accelerating Grain Product Innovation\",\"authors\":\"R. Henry\",\"doi\":\"10.1094/cfw-64-6-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid advances in genomics technology have continued over the last few years. The ability to edit plant genes has been enabled by the development of clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) and related technologies. The continuing improvements in DNA sequencing technology have complemented these new technologies by facilitating efficient and very specific targeting of genetic changes to specific genes and traits. Plant breeding can now move beyond marker-assisted breeding and genetic modification technologies to more complete and planned genetic improvements. Grain crops, in particular, are likely to benefit from increased rates of genetic gain. The genetic basis of grain characteristics will be more easily determined, resulting in new opportunities to improve grain quality and innovate in the development of new traits. Product traceability and identity preservation will also be enhanced by these technologies.\",\"PeriodicalId\":50707,\"journal\":{\"name\":\"Cereal Foods World\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cereal Foods World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1094/cfw-64-6-0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cereal Foods World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1094/cfw-64-6-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

摘要

基因组学技术的快速发展在过去几年中一直在继续。编辑植物基因的能力是通过聚集规律间隔的短回文重复序列和相关蛋白9 (CRISPR/Cas9)和相关技术的发展而实现的。DNA测序技术的持续改进通过促进对特定基因和性状的有效和非常具体的遗传变化靶向性来补充这些新技术。植物育种现在可以超越标记辅助育种和基因改造技术,实现更完整、更有计划的基因改良。谷物作物尤其可能从遗传增益率的提高中受益。粮食性状的遗传基础将更容易确定,从而为提高粮食品质和创新开发新性状提供了新的机遇。这些技术也将增强产品的可追溯性和身份保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomics and Gene-Editing Technologies Accelerating Grain Product Innovation
Rapid advances in genomics technology have continued over the last few years. The ability to edit plant genes has been enabled by the development of clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) and related technologies. The continuing improvements in DNA sequencing technology have complemented these new technologies by facilitating efficient and very specific targeting of genetic changes to specific genes and traits. Plant breeding can now move beyond marker-assisted breeding and genetic modification technologies to more complete and planned genetic improvements. Grain crops, in particular, are likely to benefit from increased rates of genetic gain. The genetic basis of grain characteristics will be more easily determined, resulting in new opportunities to improve grain quality and innovate in the development of new traits. Product traceability and identity preservation will also be enhanced by these technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cereal Foods World
Cereal Foods World 工程技术-食品科技
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
>36 weeks
期刊介绍: Food industry professionals rely on Cereal Foods World (CFW) to bring them the most current industry and product information. Contributors are real-world industry professionals with hands-on experience. CFW covers grain-based food science, technology, and new product development. It includes high-quality feature articles and scientific research papers that focus on advances in grain-based food science and the application of these advances to product development and food production practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信