声带纤维组织的微观力学模型。

Alberto Terzolo, L. Bailly, Laurent Orgéas, T. Cochereau, Nathalie Henrich Bernardoni
{"title":"声带纤维组织的微观力学模型。","authors":"Alberto Terzolo, L. Bailly, Laurent Orgéas, T. Cochereau, Nathalie Henrich Bernardoni","doi":"10.2139/ssrn.3962822","DOIUrl":null,"url":null,"abstract":"Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"128 1","pages":"105118"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A micro-mechanical model for the fibrous tissues of vocal folds.\",\"authors\":\"Alberto Terzolo, L. Bailly, Laurent Orgéas, T. Cochereau, Nathalie Henrich Bernardoni\",\"doi\":\"10.2139/ssrn.3962822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"128 1\",\"pages\":\"105118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3962822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.3962822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

声带是由胶原蛋白、弹性蛋白和肌肉纤维网络组成的喉软层组织,具有显著的振动力学性能。然而,其组织学特征对其整体力学性能的影响仍然是难以捉摸的。因此,本研究提出了一种微力学超弹性模型,能够描述声襞亚层的三维纤维结构和周围基质,并预测其力学行为。对于每一层,利用现有的组织力学数据确定模型参数,包括它们对关键生理加载路径(即纵向拉伸、横向压缩和纵向剪切)的准静态响应。无论加载路径如何,都表明了宏观尺度的非线性、各向异性组织响应是如何从纤维尺度继承的。预测了微观机制的场景,强调了三维纤维取向在拉伸中的主要作用,在压缩中的空间位阻和在剪切中的基质贡献。最后,将这些预测与振动超弹性Timoshenko梁理论相结合,强调了上层纤维结构对声带振动特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A micro-mechanical model for the fibrous tissues of vocal folds.
Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信