预测数字化的劳动力需求:一种双部图机器学习方法

IF 2.2 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Dimitri Percia David , Santiago Anton Moreno , Loïc Maréchal , Thomas Maillart , Alain Mermoud
{"title":"预测数字化的劳动力需求:一种双部图机器学习方法","authors":"Dimitri Percia David ,&nbsp;Santiago Anton Moreno ,&nbsp;Loïc Maréchal ,&nbsp;Thomas Maillart ,&nbsp;Alain Mermoud","doi":"10.1016/j.wpi.2023.102193","DOIUrl":null,"url":null,"abstract":"<div><p>We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.</p></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"73 ","pages":"Article 102193"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting labor needs for digitalization: A bi-partite graph machine learning approach\",\"authors\":\"Dimitri Percia David ,&nbsp;Santiago Anton Moreno ,&nbsp;Loïc Maréchal ,&nbsp;Thomas Maillart ,&nbsp;Alain Mermoud\",\"doi\":\"10.1016/j.wpi.2023.102193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.</p></div>\",\"PeriodicalId\":51794,\"journal\":{\"name\":\"World Patent Information\",\"volume\":\"73 \",\"pages\":\"Article 102193\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Patent Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0172219023000236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219023000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们使用来自瑞士组织的数字和网络安全招聘的独特数据库,并开发了一种基于时间双向网络的方法,该网络通过支持向量机将本地和全球指数结合起来。我们预测工作机会的出现和消失在一到六个月的范围内。我们表明全球指数产生最高的预测能力,尽管本地网络确实有助于长期预测。在一个月水平线上,“曲线下面积”和“平均精度”分别为0.984和0.905。在6个月期限,它们分别达到0.864和0.543。我们的研究强调了熟练劳动力与数字革命之间的联系,以及对知识产权和技术预测的政策影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting labor needs for digitalization: A bi-partite graph machine learning approach

We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Patent Information
World Patent Information INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
3.50
自引率
18.50%
发文量
40
期刊介绍: The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信