{"title":"极性弹性体的机电不稳定性","authors":"Yanhui Jiang, H. Nayeb-Hashemi, Yan Su","doi":"10.1115/1.4062873","DOIUrl":null,"url":null,"abstract":"\n Based on a continuum theory that accounts for the underlying molecular physics of polar elastomers (PEs), a typical boundary value problem (BVP) is developed to analyze the electro-mechanical instability (EMI) of PEs with randomly distributed dielectric particles. Through extensive numerical simulations, the effects of various parameters such as particle volume fraction, particle size and enhancement factor related to polar groups on the critical voltage leading to EMI of PEs are investigated. The results are presented in 3D phase diagrams, which may better help researchers to understand EMI of PEs and guide them in synthesis, design, and application of PEs in the fields of chemistry, physics, bio-engineering, etc.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Electromechanical Instability of Polar Elastomers\",\"authors\":\"Yanhui Jiang, H. Nayeb-Hashemi, Yan Su\",\"doi\":\"10.1115/1.4062873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on a continuum theory that accounts for the underlying molecular physics of polar elastomers (PEs), a typical boundary value problem (BVP) is developed to analyze the electro-mechanical instability (EMI) of PEs with randomly distributed dielectric particles. Through extensive numerical simulations, the effects of various parameters such as particle volume fraction, particle size and enhancement factor related to polar groups on the critical voltage leading to EMI of PEs are investigated. The results are presented in 3D phase diagrams, which may better help researchers to understand EMI of PEs and guide them in synthesis, design, and application of PEs in the fields of chemistry, physics, bio-engineering, etc.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062873\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4062873","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
On the Electromechanical Instability of Polar Elastomers
Based on a continuum theory that accounts for the underlying molecular physics of polar elastomers (PEs), a typical boundary value problem (BVP) is developed to analyze the electro-mechanical instability (EMI) of PEs with randomly distributed dielectric particles. Through extensive numerical simulations, the effects of various parameters such as particle volume fraction, particle size and enhancement factor related to polar groups on the critical voltage leading to EMI of PEs are investigated. The results are presented in 3D phase diagrams, which may better help researchers to understand EMI of PEs and guide them in synthesis, design, and application of PEs in the fields of chemistry, physics, bio-engineering, etc.