{"title":"正则子图上Erdős-Sauer问题的解决","authors":"Oliver Janzer, B. Sudakov","doi":"10.1017/fmp.2023.19","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we completely resolve the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an n-vertex graph can have without containing a k-regular subgraph, for some fixed integer \n$k\\geq 3$\n . We prove that any n-vertex graph with average degree at least \n$C_k\\log \\log n$\n contains a k-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially improves an old result of Pyber, who showed that average degree at least \n$C_k\\log n$\n is enough. Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Resolution of the Erdős–Sauer problem on regular subgraphs\",\"authors\":\"Oliver Janzer, B. Sudakov\",\"doi\":\"10.1017/fmp.2023.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we completely resolve the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an n-vertex graph can have without containing a k-regular subgraph, for some fixed integer \\n$k\\\\geq 3$\\n . We prove that any n-vertex graph with average degree at least \\n$C_k\\\\log \\\\log n$\\n contains a k-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially improves an old result of Pyber, who showed that average degree at least \\n$C_k\\\\log n$\\n is enough. Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Resolution of the Erdős–Sauer problem on regular subgraphs
Abstract In this paper, we completely resolve the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an n-vertex graph can have without containing a k-regular subgraph, for some fixed integer
$k\geq 3$
. We prove that any n-vertex graph with average degree at least
$C_k\log \log n$
contains a k-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially improves an old result of Pyber, who showed that average degree at least
$C_k\log n$
is enough. Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.