Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui
{"title":"拟南芥核孔蛋白1参与细胞分裂和扩增","authors":"Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui","doi":"10.1016/j.plgene.2022.100385","DOIUrl":null,"url":null,"abstract":"<div><p><span>NUCLEOPORIN1 (NUP1), a component of the nuclear pore complex and an anchor for the TREX-2 mRNA export complex, was previously reported to have diverse functions in </span><span><em>Arabidopsis</em></span>. Several studies have shown that mutations in <em>NUP1</em> lead to small stature plants with small leaves; however, the underlying mechanism is unknown. Here, we investigated the small leaf phenotype of <em>nup1–1</em><span> plants and found that cell number and size are reduced. Next, gene expression analysis revealed significant changes in the expression of several cell-cycle and expansion-related genes in leaves of </span><em>nup1–1</em><span><span> plants compared to the wild-type control (Col-0). Furthermore, the subcellular localization of NUP1 throughout mitosis uncovered the potential role of NUP1 in aligning the chromosome during metaphase and separation of chromosomes in </span>anaphase. Our findings suggest that NUP1 is required for maintaining normal plant stature by regulating cell size and number. Further protein-protein interaction of NUP1 and metaphase-anaphase-related proteins would help identify the precise roles of NUP1 in cell division.</span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100385"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Involvement of NUCLEOPORIN1 in cell division and expansion in Arabidopsis\",\"authors\":\"Raj Kumar Thapa , Gang Tian , Xin Xie , Susanne E. Kohalmi , Yuhai Cui\",\"doi\":\"10.1016/j.plgene.2022.100385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>NUCLEOPORIN1 (NUP1), a component of the nuclear pore complex and an anchor for the TREX-2 mRNA export complex, was previously reported to have diverse functions in </span><span><em>Arabidopsis</em></span>. Several studies have shown that mutations in <em>NUP1</em> lead to small stature plants with small leaves; however, the underlying mechanism is unknown. Here, we investigated the small leaf phenotype of <em>nup1–1</em><span> plants and found that cell number and size are reduced. Next, gene expression analysis revealed significant changes in the expression of several cell-cycle and expansion-related genes in leaves of </span><em>nup1–1</em><span><span> plants compared to the wild-type control (Col-0). Furthermore, the subcellular localization of NUP1 throughout mitosis uncovered the potential role of NUP1 in aligning the chromosome during metaphase and separation of chromosomes in </span>anaphase. Our findings suggest that NUP1 is required for maintaining normal plant stature by regulating cell size and number. Further protein-protein interaction of NUP1 and metaphase-anaphase-related proteins would help identify the precise roles of NUP1 in cell division.</span></p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"32 \",\"pages\":\"Article 100385\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235240732200035X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235240732200035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Involvement of NUCLEOPORIN1 in cell division and expansion in Arabidopsis
NUCLEOPORIN1 (NUP1), a component of the nuclear pore complex and an anchor for the TREX-2 mRNA export complex, was previously reported to have diverse functions in Arabidopsis. Several studies have shown that mutations in NUP1 lead to small stature plants with small leaves; however, the underlying mechanism is unknown. Here, we investigated the small leaf phenotype of nup1–1 plants and found that cell number and size are reduced. Next, gene expression analysis revealed significant changes in the expression of several cell-cycle and expansion-related genes in leaves of nup1–1 plants compared to the wild-type control (Col-0). Furthermore, the subcellular localization of NUP1 throughout mitosis uncovered the potential role of NUP1 in aligning the chromosome during metaphase and separation of chromosomes in anaphase. Our findings suggest that NUP1 is required for maintaining normal plant stature by regulating cell size and number. Further protein-protein interaction of NUP1 and metaphase-anaphase-related proteins would help identify the precise roles of NUP1 in cell division.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.