{"title":"个人健康监测中用于活动识别的隐私保护物联网框架","authors":"T. Jourdan, A. Boutet, A. Bahi, Carole Frindel","doi":"10.1145/3416947","DOIUrl":null,"url":null,"abstract":"The increasing popularity of wearable consumer products can play a significant role in the healthcare sector. The recognition of human activities from IoT is an important building block in this context. While the analysis of the generated datastream can have many benefits from a health point of view, it can also lead to privacy threats by exposing highly sensitive information. In this article, we propose a framework that relies on machine learning to efficiently recognise the user activity, useful for personal healthcare monitoring, while limiting the risk of users re-identification from biometric patterns characterizing each individual. To achieve that, we show that features in temporal domain are useful to discriminate user activity while features in frequency domain lead to distinguish the user identity. We then design a novel protection mechanism processing the raw signal on the user’s smartphone to select relevant features for activity recognition and normalise features sensitive to re-identification. These unlinkable features are then transferred to the application server. We extensively evaluate our framework with reference datasets: Results show an accurate activity recognition (87%) while limiting the re-identification rate (33%). This represents a slight decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3416947","citationCount":"7","resultStr":"{\"title\":\"Privacy-preserving IoT Framework for Activity Recognition in Personal Healthcare Monitoring\",\"authors\":\"T. Jourdan, A. Boutet, A. Bahi, Carole Frindel\",\"doi\":\"10.1145/3416947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing popularity of wearable consumer products can play a significant role in the healthcare sector. The recognition of human activities from IoT is an important building block in this context. While the analysis of the generated datastream can have many benefits from a health point of view, it can also lead to privacy threats by exposing highly sensitive information. In this article, we propose a framework that relies on machine learning to efficiently recognise the user activity, useful for personal healthcare monitoring, while limiting the risk of users re-identification from biometric patterns characterizing each individual. To achieve that, we show that features in temporal domain are useful to discriminate user activity while features in frequency domain lead to distinguish the user identity. We then design a novel protection mechanism processing the raw signal on the user’s smartphone to select relevant features for activity recognition and normalise features sensitive to re-identification. These unlinkable features are then transferred to the application server. We extensively evaluate our framework with reference datasets: Results show an accurate activity recognition (87%) while limiting the re-identification rate (33%). This represents a slight decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3416947\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3416947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3416947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Privacy-preserving IoT Framework for Activity Recognition in Personal Healthcare Monitoring
The increasing popularity of wearable consumer products can play a significant role in the healthcare sector. The recognition of human activities from IoT is an important building block in this context. While the analysis of the generated datastream can have many benefits from a health point of view, it can also lead to privacy threats by exposing highly sensitive information. In this article, we propose a framework that relies on machine learning to efficiently recognise the user activity, useful for personal healthcare monitoring, while limiting the risk of users re-identification from biometric patterns characterizing each individual. To achieve that, we show that features in temporal domain are useful to discriminate user activity while features in frequency domain lead to distinguish the user identity. We then design a novel protection mechanism processing the raw signal on the user’s smartphone to select relevant features for activity recognition and normalise features sensitive to re-identification. These unlinkable features are then transferred to the application server. We extensively evaluate our framework with reference datasets: Results show an accurate activity recognition (87%) while limiting the re-identification rate (33%). This represents a slight decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.