Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen
{"title":"封面图片:一个易于使用的定制电池,用于可充电电池的中子粉末衍射研究(化学)。方法10/2022)","authors":"Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen","doi":"10.1002/cmtd.202200056","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. More information can be found in the Research Article by Daniel R. Sørensen et al..\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200056","citationCount":"0","resultStr":"{\"title\":\"Cover Picture: An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteries (Chem. Methods 10/2022)\",\"authors\":\"Daniel Risskov Sørensen, Andreas Østergaard Drejer, Michael Heere, Anatoliy Senyshyn, Matthias Frontzek, Thomas Hansen, Christophe Didier, Vanessa K. Peterson, Dorthe Bomholdt Ravnsbæk, Mads Ry Vogel Jørgensen\",\"doi\":\"10.1002/cmtd.202200056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Front Cover</b> shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. More information can be found in the Research Article by Daniel R. Sørensen et al..\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
前盖展示了一个为中子粉末衍射而设计的电池。该图试图说明实验过程,其中锂离子在放电过程中进入电池阴极的晶体结构。这导致晶体结构的变化,这对于优化电池材料的理解非常重要。这些结构变化是通过中子粉末衍射在operando中探测到的,与类似的技术(如x射线衍射)相比,中子特别适合探测锂离子的位置。更多信息可以在Daniel R. s . ørensen等人的研究文章中找到。
Cover Picture: An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteries (Chem. Methods 10/2022)
The Front Cover shows a battery cell designed for in operando neutron powder diffraction. The picture seeks to illustrate the experiment process where lithium ions are moving into the crystal structure of the battery cathode during discharge. This leads to changes in the crystal structure that are very important to understand for optimizing the battery materials. These structural changes are probed in operando by neutron powder diffraction, and neutrons are especially suited for probing the location of Li-ion compared with similar techniques such as X-ray diffraction. More information can be found in the Research Article by Daniel R. Sørensen et al..