T. Raghunathan, K. Kirtland, Ji Li, K. White, B. Murthy, Xia Lin, Latreace Harris, L. Gibbs-Scharf, E. Zell
{"title":"从免疫信息系统构建州和国家疫苗接种率估计","authors":"T. Raghunathan, K. Kirtland, Ji Li, K. White, B. Murthy, Xia Lin, Latreace Harris, L. Gibbs-Scharf, E. Zell","doi":"10.1093/jssam/smac042","DOIUrl":null,"url":null,"abstract":"\n Immunization Information Systems are confidential computerized population-based systems that collect data from vaccination providers on individual vaccinations administered along with limited patient-level characteristics. Through a data use agreement, Centers for Disease Control and Prevention obtains the individual-level data and aggregates the number of vaccinations for geographical statistical areas defined by the US Census Bureau (counties or equivalent statistical entities) for each vaccine included in system. Currently, 599 counties, covering 11 states, collect and report data using a uniform protocol. We combine these data with inter-decennial population counts from the Population Estimates Program in the US Census Bureau and several covariates from a variety of sources to develop model-based estimates for each of the 3,142 counties in 50 states and the District of Columbia and then aggregate to the state and national levels. We use a hierarchical Bayesian model and Markov Chain Monte Carlo methods to obtain draws from the posterior predictive distribution of the vaccination rates. We use posterior predictive checks and cross-validation to assess the goodness of fit and to validate the models. We also compare the model-based estimates to direct estimates from the National Immunization Surveys.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructing State and National Estimates of Vaccination Rates from Immunization Information Systems\",\"authors\":\"T. Raghunathan, K. Kirtland, Ji Li, K. White, B. Murthy, Xia Lin, Latreace Harris, L. Gibbs-Scharf, E. Zell\",\"doi\":\"10.1093/jssam/smac042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Immunization Information Systems are confidential computerized population-based systems that collect data from vaccination providers on individual vaccinations administered along with limited patient-level characteristics. Through a data use agreement, Centers for Disease Control and Prevention obtains the individual-level data and aggregates the number of vaccinations for geographical statistical areas defined by the US Census Bureau (counties or equivalent statistical entities) for each vaccine included in system. Currently, 599 counties, covering 11 states, collect and report data using a uniform protocol. We combine these data with inter-decennial population counts from the Population Estimates Program in the US Census Bureau and several covariates from a variety of sources to develop model-based estimates for each of the 3,142 counties in 50 states and the District of Columbia and then aggregate to the state and national levels. We use a hierarchical Bayesian model and Markov Chain Monte Carlo methods to obtain draws from the posterior predictive distribution of the vaccination rates. We use posterior predictive checks and cross-validation to assess the goodness of fit and to validate the models. We also compare the model-based estimates to direct estimates from the National Immunization Surveys.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smac042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Constructing State and National Estimates of Vaccination Rates from Immunization Information Systems
Immunization Information Systems are confidential computerized population-based systems that collect data from vaccination providers on individual vaccinations administered along with limited patient-level characteristics. Through a data use agreement, Centers for Disease Control and Prevention obtains the individual-level data and aggregates the number of vaccinations for geographical statistical areas defined by the US Census Bureau (counties or equivalent statistical entities) for each vaccine included in system. Currently, 599 counties, covering 11 states, collect and report data using a uniform protocol. We combine these data with inter-decennial population counts from the Population Estimates Program in the US Census Bureau and several covariates from a variety of sources to develop model-based estimates for each of the 3,142 counties in 50 states and the District of Columbia and then aggregate to the state and national levels. We use a hierarchical Bayesian model and Markov Chain Monte Carlo methods to obtain draws from the posterior predictive distribution of the vaccination rates. We use posterior predictive checks and cross-validation to assess the goodness of fit and to validate the models. We also compare the model-based estimates to direct estimates from the National Immunization Surveys.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.