{"title":"具有固定效应的动态面板数据模型的异方差-稳健标准误差*","authors":"Chirok Han, Hyoungjong Kim","doi":"10.1111/obes.12554","DOIUrl":null,"url":null,"abstract":"<p>For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"85 5","pages":"1135-1155"},"PeriodicalIF":16.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroskedasticity-Robust Standard Errors for Dynamic Panel Data Models with Fixed Effects*\",\"authors\":\"Chirok Han, Hyoungjong Kim\",\"doi\":\"10.1111/obes.12554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"85 5\",\"pages\":\"1135-1155\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/obes.12554\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12554","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heteroskedasticity-Robust Standard Errors for Dynamic Panel Data Models with Fixed Effects*
For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.