具有固定效应的动态面板数据模型的异方差-稳健标准误差*

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chirok Han, Hyoungjong Kim
{"title":"具有固定效应的动态面板数据模型的异方差-稳健标准误差*","authors":"Chirok Han,&nbsp;Hyoungjong Kim","doi":"10.1111/obes.12554","DOIUrl":null,"url":null,"abstract":"<p>For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"85 5","pages":"1135-1155"},"PeriodicalIF":16.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroskedasticity-Robust Standard Errors for Dynamic Panel Data Models with Fixed Effects*\",\"authors\":\"Chirok Han,&nbsp;Hyoungjong Kim\",\"doi\":\"10.1111/obes.12554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"85 5\",\"pages\":\"1135-1155\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/obes.12554\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12554","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于具有固定效应的线性动态面板数据模型,从业者通常使用聚类协方差估计器来推断在特殊误差中存在的横截面或时间异方差。聚类估计器的性能很大程度上取决于横截面维(n)的大小。当n很小时,使用聚类估计器的推断会受到损害。Stock和Watson(2008)的一篇论文提供了一种在严格外生性条件下的解决方案,如果特质误差可能是异方差的,但序列不相关。然而,他们的方法不能推广到动态面板数据模型,尽管由于模型识别需要序列不相关,异方差鲁棒性推断与动态模型具有天然的相关性。在本文中,我们提供了一种工具变量的解和使用预定仪器的矩估计的广义方法,包括常用的动态面板模型估计。建立了渐近性,并通过仿真验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heteroskedasticity-Robust Standard Errors for Dynamic Panel Data Models with Fixed Effects*

For linear panel data models with fixed effects, cluster-robust covariance estimation does not use variability over time. The extant heteroskedasticity-robust methods available under strict exogeneity do not generalize to dynamic models. We propose novel robust covariance estimators under a strong version of serial uncorrelatedness, where serial uncorrelatedness is required to identify dynamic panel models. Asymptotics are established, and simulations verify theoretical findings. The estimator can apply to the popular dynamic IV-GMM estimators and be a sharper alternative for cluster-robust covariance estimators in panel data models with limited cross-sectional information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信