K3 Lehmer映射的方程

IF 0.9 1区 数学 Q2 MATHEMATICS
Simon Brandhorst, N. Elkies
{"title":"K3 Lehmer映射的方程","authors":"Simon Brandhorst, N. Elkies","doi":"10.1090/jag/810","DOIUrl":null,"url":null,"abstract":"C. T. McMullen proved the existence of a K3 surface with an automorphism of entropy given by the logarithm of Lehmer’s number, which is the minimum possible among automorphisms of complex surfaces. We reconstruct equations for the surface and its automorphism from the Hodge theoretic model provided by McMullen. The approach is computer aided and relies on finite non-symplectic automorphisms, \n\n \n p\n p\n \n\n-adic lifting, elliptic fibrations and the Kneser neighbor method for \n\n \n \n Z\n \n \\mathbb {Z}\n \n\n-lattices. It can be applied to reconstruct any automorphism of an elliptic K3 surface from its action on the Neron-Severi lattice.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Equations for a K3 Lehmer map\",\"authors\":\"Simon Brandhorst, N. Elkies\",\"doi\":\"10.1090/jag/810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C. T. McMullen proved the existence of a K3 surface with an automorphism of entropy given by the logarithm of Lehmer’s number, which is the minimum possible among automorphisms of complex surfaces. We reconstruct equations for the surface and its automorphism from the Hodge theoretic model provided by McMullen. The approach is computer aided and relies on finite non-symplectic automorphisms, \\n\\n \\n p\\n p\\n \\n\\n-adic lifting, elliptic fibrations and the Kneser neighbor method for \\n\\n \\n \\n Z\\n \\n \\\\mathbb {Z}\\n \\n\\n-lattices. It can be applied to reconstruct any automorphism of an elliptic K3 surface from its action on the Neron-Severi lattice.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/810\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/810","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

C.T.McMullen用Lehmer数的对数给出的熵的自同构证明了K3曲面的存在,该自同构是复曲面的自同构中可能的最小值。我们从McMullen提供的Hodge理论模型重建了曲面及其自同构的方程组。该方法是计算机辅助的,并依赖于有限的非辛自同构、p p-adic提升、椭圆fibration和Z\mathbb{Z}-格的Kneer邻居方法。它可以应用于从椭圆K3曲面在Neron Severi格上的作用重建其任何自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equations for a K3 Lehmer map
C. T. McMullen proved the existence of a K3 surface with an automorphism of entropy given by the logarithm of Lehmer’s number, which is the minimum possible among automorphisms of complex surfaces. We reconstruct equations for the surface and its automorphism from the Hodge theoretic model provided by McMullen. The approach is computer aided and relies on finite non-symplectic automorphisms, p p -adic lifting, elliptic fibrations and the Kneser neighbor method for Z \mathbb {Z} -lattices. It can be applied to reconstruct any automorphism of an elliptic K3 surface from its action on the Neron-Severi lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信