用矩交法概率推导液滴速度

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
N. M. Jasim
{"title":"用矩交法概率推导液滴速度","authors":"N. M. Jasim","doi":"10.1515/eng-2022-0407","DOIUrl":null,"url":null,"abstract":"Abstract Accurately prediction of dispersion and polydispersity of droplet flow is not a trivial task due to the complex behavior of the droplet size distribution (DSD) and the strong state of the instantaneous velocity of a droplet on the shape and size of the droplet. Describing the distribution of sizes and velocities of droplets initially formed in sprays is an essential piece of information needed in spray modeling, which is used to define the initial state of the spray droplets in the downstream two-phase flow fields’ predictive computations. The predictive model for the droplet size and velocity distributions in sprays is formulated as the droplet’s velocity magnitude has a power–law relationship with the droplet in this study. The present model incorporates the deterministic and stochastic aspects of the spray formation process. The quadrature method of moments (QMOM) is applied to solve numerically the transport equations of the probability density function coupled with conserved source terms incompressible Navier-Stokes equations for the liquid phase. The sub-models are connected by different source terms signifying the liquid-gas interaction. Equations of transport for spray moments are derived from DSD, and closure is attained using a gamma distribution. The integer spray moments concerning the volume are used to construct the continuous distribution of QMOM. In contrast, the velocity moments are used to determine the droplet velocity as a constant function of the droplet diameter. The model is first applied to simulate a diesel spray tip penetration under nonreactive conditions with different droplet velocity profiles to validate the approach with experimental data. An additional case of a liquid nitrogen spray is applied to show the gamma distribution’s ability to describe spray drop size distribution. The model generally predicts reasonable agreement with the experimental for both cases.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic derivation of droplet velocity using quadrature method of moments\",\"authors\":\"N. M. Jasim\",\"doi\":\"10.1515/eng-2022-0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurately prediction of dispersion and polydispersity of droplet flow is not a trivial task due to the complex behavior of the droplet size distribution (DSD) and the strong state of the instantaneous velocity of a droplet on the shape and size of the droplet. Describing the distribution of sizes and velocities of droplets initially formed in sprays is an essential piece of information needed in spray modeling, which is used to define the initial state of the spray droplets in the downstream two-phase flow fields’ predictive computations. The predictive model for the droplet size and velocity distributions in sprays is formulated as the droplet’s velocity magnitude has a power–law relationship with the droplet in this study. The present model incorporates the deterministic and stochastic aspects of the spray formation process. The quadrature method of moments (QMOM) is applied to solve numerically the transport equations of the probability density function coupled with conserved source terms incompressible Navier-Stokes equations for the liquid phase. The sub-models are connected by different source terms signifying the liquid-gas interaction. Equations of transport for spray moments are derived from DSD, and closure is attained using a gamma distribution. The integer spray moments concerning the volume are used to construct the continuous distribution of QMOM. In contrast, the velocity moments are used to determine the droplet velocity as a constant function of the droplet diameter. The model is first applied to simulate a diesel spray tip penetration under nonreactive conditions with different droplet velocity profiles to validate the approach with experimental data. An additional case of a liquid nitrogen spray is applied to show the gamma distribution’s ability to describe spray drop size distribution. The model generally predicts reasonable agreement with the experimental for both cases.\",\"PeriodicalId\":19512,\"journal\":{\"name\":\"Open Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eng-2022-0407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于液滴尺寸分布(DSD)的复杂行为以及液滴瞬时速度对液滴形状和尺寸的强烈影响,准确预测液滴流动的分散性和多分散性并非易事。描述最初在喷雾中形成的液滴的尺寸和速度分布是喷雾建模所需的一项重要信息,用于在下游两相流场的预测计算中定义喷雾液滴的初始状态。在本研究中,喷雾中液滴尺寸和速度分布的预测模型被公式化为液滴的速度大小与液滴具有幂律关系。本模型结合了喷雾形成过程的确定性和随机性。应用矩的求积法(QMOM)对液相的概率密度函数与守恒源项不可压缩Navier-Stokes方程耦合的输运方程进行了数值求解。子模型由表示液气相互作用的不同源项连接。喷雾力矩的传输方程由DSD导出,并使用伽马分布获得闭合。使用与体积有关的整数喷雾矩来构造QMOM的连续分布。相反,速度矩用于确定作为液滴直径的恒定函数的液滴速度。该模型首先用于模拟不同液滴速度分布的非反应条件下的柴油机喷嘴穿透,以实验数据验证该方法。应用液氮喷雾的另一种情况来显示伽马分布描述喷雾液滴尺寸分布的能力。对于这两种情况,该模型通常预测与实验结果合理一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic derivation of droplet velocity using quadrature method of moments
Abstract Accurately prediction of dispersion and polydispersity of droplet flow is not a trivial task due to the complex behavior of the droplet size distribution (DSD) and the strong state of the instantaneous velocity of a droplet on the shape and size of the droplet. Describing the distribution of sizes and velocities of droplets initially formed in sprays is an essential piece of information needed in spray modeling, which is used to define the initial state of the spray droplets in the downstream two-phase flow fields’ predictive computations. The predictive model for the droplet size and velocity distributions in sprays is formulated as the droplet’s velocity magnitude has a power–law relationship with the droplet in this study. The present model incorporates the deterministic and stochastic aspects of the spray formation process. The quadrature method of moments (QMOM) is applied to solve numerically the transport equations of the probability density function coupled with conserved source terms incompressible Navier-Stokes equations for the liquid phase. The sub-models are connected by different source terms signifying the liquid-gas interaction. Equations of transport for spray moments are derived from DSD, and closure is attained using a gamma distribution. The integer spray moments concerning the volume are used to construct the continuous distribution of QMOM. In contrast, the velocity moments are used to determine the droplet velocity as a constant function of the droplet diameter. The model is first applied to simulate a diesel spray tip penetration under nonreactive conditions with different droplet velocity profiles to validate the approach with experimental data. An additional case of a liquid nitrogen spray is applied to show the gamma distribution’s ability to describe spray drop size distribution. The model generally predicts reasonable agreement with the experimental for both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信