多区域电力系统中恒热负荷聚集器的分布式控制

IF 1.6 Q4 ENERGY & FUELS
Kaiwen Zeng, Haizhu Wang, Jianing Liu, Bin Lin, Bin Du, Yi You
{"title":"多区域电力系统中恒热负荷聚集器的分布式控制","authors":"Kaiwen Zeng,&nbsp;Haizhu Wang,&nbsp;Jianing Liu,&nbsp;Bin Lin,&nbsp;Bin Du,&nbsp;Yi You","doi":"10.1049/esi2.12041","DOIUrl":null,"url":null,"abstract":"<p>In modern power systems, the high penetration of renewable energy challenges system frequency regulation and stability. In such conditions, the demand-side loads can be aggregated and applied for power system frequency regulation. In this study, a dual-level distributed control framework is proposed for thermostatically controlled load (TCL) aggregators in multi-area load frequency control. In the higher control level, the leader of TCL aggregators in each control area is controlled by local and neighbouring area control errors. In the lower control level, multiple TCL aggregators are coupled via a leader-follower consensus control protocol to track the power reference from the area leader. As a result, the dual-level distributed controlled TCL aggregators can operate together with synchronous generators for frequency regulation in multi-area power systems. The proposed method is validated in a three-area power system under various cyber-physical conditions, including contingency and normal operation conditions, as well as communication failure and delay conditions.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"3 4","pages":"498-507"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12041","citationCount":"2","resultStr":"{\"title\":\"Distributed control of thermostatically controlled load aggregators in multi-area power systems\",\"authors\":\"Kaiwen Zeng,&nbsp;Haizhu Wang,&nbsp;Jianing Liu,&nbsp;Bin Lin,&nbsp;Bin Du,&nbsp;Yi You\",\"doi\":\"10.1049/esi2.12041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern power systems, the high penetration of renewable energy challenges system frequency regulation and stability. In such conditions, the demand-side loads can be aggregated and applied for power system frequency regulation. In this study, a dual-level distributed control framework is proposed for thermostatically controlled load (TCL) aggregators in multi-area load frequency control. In the higher control level, the leader of TCL aggregators in each control area is controlled by local and neighbouring area control errors. In the lower control level, multiple TCL aggregators are coupled via a leader-follower consensus control protocol to track the power reference from the area leader. As a result, the dual-level distributed controlled TCL aggregators can operate together with synchronous generators for frequency regulation in multi-area power systems. The proposed method is validated in a three-area power system under various cyber-physical conditions, including contingency and normal operation conditions, as well as communication failure and delay conditions.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"3 4\",\"pages\":\"498-507\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12041\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

在现代电力系统中,可再生能源的高渗透率对系统的频率调节和稳定性提出了挑战。在这种情况下,可以对需求侧负荷进行聚合,用于电力系统的频率调节。本文提出了一种适用于多区域负荷频率控制的恒温控制负荷聚合器的双级分布式控制框架。在更高的控制层,TCL聚合器在每个控制区域内的leader由本地和邻近区域控制误差控制。在较低的控制级别,多个TCL聚合器通过领导者-追随者共识控制协议耦合,以跟踪来自区域领导者的功率引用。因此,双电平分布式控制TCL集线器可以与同步发电机一起在多区域电力系统中进行频率调节。该方法在三区电力系统中进行了各种网络物理条件下的验证,包括应急和正常运行条件,以及通信故障和延迟条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed control of thermostatically controlled load aggregators in multi-area power systems

Distributed control of thermostatically controlled load aggregators in multi-area power systems

In modern power systems, the high penetration of renewable energy challenges system frequency regulation and stability. In such conditions, the demand-side loads can be aggregated and applied for power system frequency regulation. In this study, a dual-level distributed control framework is proposed for thermostatically controlled load (TCL) aggregators in multi-area load frequency control. In the higher control level, the leader of TCL aggregators in each control area is controlled by local and neighbouring area control errors. In the lower control level, multiple TCL aggregators are coupled via a leader-follower consensus control protocol to track the power reference from the area leader. As a result, the dual-level distributed controlled TCL aggregators can operate together with synchronous generators for frequency regulation in multi-area power systems. The proposed method is validated in a three-area power system under various cyber-physical conditions, including contingency and normal operation conditions, as well as communication failure and delay conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信