{"title":"均匀几乎球形物体势的谱近似的误差界","authors":"Blažej Bucha, Lorenzo Rossi, Fernando Sansò","doi":"10.1007/s11200-021-0730-4","DOIUrl":null,"url":null,"abstract":"<div><p>Several kinds of approximation of the gravitational potential of a homogeneous body by truncated spherical harmonics series are in use in physical geodesy. However, only one of them is capable of a representation converging to the true potential in the whole layer between the Brillouin sphere and the Bjerhammar sphere of the body. We aim at providing various majorizations, namely upper bounds, of the error with the double purpose of proving explicitly the convergence in the sense of different norms and of giving computable bounds, that might be used in numerical studies. The first aim is reached for all the norms. For the second, however, it turns out that among the bounds, when applied to the example of the terrain correction of the Earth, only those referring to the mean absolute error and the mean squared error at the level of Brillouin sphere of minimum radius give significant and useful results. In order to make the computation an easy exercise, a simple approximate formula has been developed requiring only the use of the distribution function of the heights of the surface of the body with respect to the Bjerhammar sphere.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"65 3-4","pages":"235 - 260"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11200-021-0730-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Error bounds for the spectral approximation of the potential of a homogeneous almost spherical body\",\"authors\":\"Blažej Bucha, Lorenzo Rossi, Fernando Sansò\",\"doi\":\"10.1007/s11200-021-0730-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several kinds of approximation of the gravitational potential of a homogeneous body by truncated spherical harmonics series are in use in physical geodesy. However, only one of them is capable of a representation converging to the true potential in the whole layer between the Brillouin sphere and the Bjerhammar sphere of the body. We aim at providing various majorizations, namely upper bounds, of the error with the double purpose of proving explicitly the convergence in the sense of different norms and of giving computable bounds, that might be used in numerical studies. The first aim is reached for all the norms. For the second, however, it turns out that among the bounds, when applied to the example of the terrain correction of the Earth, only those referring to the mean absolute error and the mean squared error at the level of Brillouin sphere of minimum radius give significant and useful results. In order to make the computation an easy exercise, a simple approximate formula has been developed requiring only the use of the distribution function of the heights of the surface of the body with respect to the Bjerhammar sphere.</p></div>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"65 3-4\",\"pages\":\"235 - 260\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11200-021-0730-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-021-0730-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-021-0730-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Error bounds for the spectral approximation of the potential of a homogeneous almost spherical body
Several kinds of approximation of the gravitational potential of a homogeneous body by truncated spherical harmonics series are in use in physical geodesy. However, only one of them is capable of a representation converging to the true potential in the whole layer between the Brillouin sphere and the Bjerhammar sphere of the body. We aim at providing various majorizations, namely upper bounds, of the error with the double purpose of proving explicitly the convergence in the sense of different norms and of giving computable bounds, that might be used in numerical studies. The first aim is reached for all the norms. For the second, however, it turns out that among the bounds, when applied to the example of the terrain correction of the Earth, only those referring to the mean absolute error and the mean squared error at the level of Brillouin sphere of minimum radius give significant and useful results. In order to make the computation an easy exercise, a simple approximate formula has been developed requiring only the use of the distribution function of the heights of the surface of the body with respect to the Bjerhammar sphere.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.