Rong Zhang , Lei Li , Huihui Li , Hansong Bai , Yuping Suo , Ju Cui , Yingmei Wang
{"title":"人参皂苷20(S)-Rg3在上皮性卵巢癌中降低KIF20A表达并促进CDC25A蛋白酶体降解","authors":"Rong Zhang , Lei Li , Huihui Li , Hansong Bai , Yuping Suo , Ju Cui , Yingmei Wang","doi":"10.1016/j.jgr.2023.06.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-κB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway.</p></div><div><h3>Materials and methods</h3><p>A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on <em>KIF20A</em> expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as <em>in vitro</em> and <em>in vivo</em> cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining.</p></div><div><h3>Results</h3><p><em>KIF20A</em> is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth <em>in vitro</em> and <em>in vivo</em>. Ginsenoside Rg3 can suppress the transcription of <em>KIF20A</em>. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCF<sup>β−TrCP</sup> E3 ubiquitin ligase. <em>In vitro</em> ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates <em>KIF20A</em> overexpression-induced CDC25A upregulation.</p></div><div><h3>Conclusion</h3><p>This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit <em>KIF20A</em> transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":"48 1","pages":"Pages 40-51"},"PeriodicalIF":6.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532300074X/pdfft?md5=478900eca8b18ed3488ba507aaee1168&pid=1-s2.0-S122684532300074X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer\",\"authors\":\"Rong Zhang , Lei Li , Huihui Li , Hansong Bai , Yuping Suo , Ju Cui , Yingmei Wang\",\"doi\":\"10.1016/j.jgr.2023.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-κB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway.</p></div><div><h3>Materials and methods</h3><p>A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on <em>KIF20A</em> expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as <em>in vitro</em> and <em>in vivo</em> cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining.</p></div><div><h3>Results</h3><p><em>KIF20A</em> is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth <em>in vitro</em> and <em>in vivo</em>. Ginsenoside Rg3 can suppress the transcription of <em>KIF20A</em>. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCF<sup>β−TrCP</sup> E3 ubiquitin ligase. <em>In vitro</em> ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates <em>KIF20A</em> overexpression-induced CDC25A upregulation.</p></div><div><h3>Conclusion</h3><p>This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit <em>KIF20A</em> transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.</p></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":\"48 1\",\"pages\":\"Pages 40-51\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S122684532300074X/pdfft?md5=478900eca8b18ed3488ba507aaee1168&pid=1-s2.0-S122684532300074X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S122684532300074X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S122684532300074X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer
Background
Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-κB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway.
Materials and methods
A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining.
Results
KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCFβ−TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation.
Conclusion
This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.