一种求解集值算子的单参数非扩张半群、凸极小和不动点问题的新方法

IF 1.4 4区 数学 Q1 MATHEMATICS
T. Sow, A. Diene, N. Djitté
{"title":"一种求解集值算子的单参数非扩张半群、凸极小和不动点问题的新方法","authors":"T. Sow, A. Diene, N. Djitté","doi":"10.37193/cjm.2023.01.23","DOIUrl":null,"url":null,"abstract":"\"In this paper, we introduce a new iterative process for solving simultaneously one-parameter nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators in real Hilbert spaces and establish strong convergence theorems for the proposed iterative process. There is no compactness assumption. Our results improve important recent results.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for solving simultaneously one-parameter nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators\",\"authors\":\"T. Sow, A. Diene, N. Djitté\",\"doi\":\"10.37193/cjm.2023.01.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we introduce a new iterative process for solving simultaneously one-parameter nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators in real Hilbert spaces and establish strong convergence theorems for the proposed iterative process. There is no compactness assumption. Our results improve important recent results.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.23\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在实数Hilbert空间中同时求解单参数非扩张半群、凸极小和集值算子不动点问题的一种新的迭代过程,并建立了该迭代过程的强收敛性定理。没有紧性假设。我们的结果改进了最近的重要结果。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach for solving simultaneously one-parameter nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators
"In this paper, we introduce a new iterative process for solving simultaneously one-parameter nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators in real Hilbert spaces and establish strong convergence theorems for the proposed iterative process. There is no compactness assumption. Our results improve important recent results."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信