{"title":"密度依赖于平均温度的修正浅水方程的相似变换","authors":"A. Paliathanasis","doi":"10.1515/ijnsns-2022-0510","DOIUrl":null,"url":null,"abstract":"Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity transformations for modified shallow water equations with density dependence on the average temperature\",\"authors\":\"A. Paliathanasis\",\"doi\":\"10.1515/ijnsns-2022-0510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-0510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Similarity transformations for modified shallow water equations with density dependence on the average temperature
Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.