密度依赖于平均温度的修正浅水方程的相似变换

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
A. Paliathanasis
{"title":"密度依赖于平均温度的修正浅水方程的相似变换","authors":"A. Paliathanasis","doi":"10.1515/ijnsns-2022-0510","DOIUrl":null,"url":null,"abstract":"Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1095 - 1108"},"PeriodicalIF":1.4000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity transformations for modified shallow water equations with density dependence on the average temperature\",\"authors\":\"A. Paliathanasis\",\"doi\":\"10.1515/ijnsns-2022-0510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"1095 - 1108\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-0510\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要李对称性分析用于研究一个修正的一维Saint-Venant系统,其中密度取决于流体的平均温度。我们假设底部的几何形状是一个平面,而粘度项被认为是非零的,因为重力也包括在内。修正后的浅水系统由三个双曲一阶偏微分方程组成。公认的李对称性形成了一个四维李代数,即a 3,3ŞA1。然而,对于无粘性模型,所承认的李对称性是6,并形成了A5.19ŞA1李代数。对于每个李代数,我们确定了一维最优系统,并给出了相似变换提供的所有可能的独立约简。计算了修正Saint-Venant系统的新的精确解和解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity transformations for modified shallow water equations with density dependence on the average temperature
Abstract The Lie symmetry analysis is applied for the study of a modified one-dimensional Saint–Venant system in which the density depends on the average temperature of the fluid. The geometry of the bottom we assume that is a plane, while the viscosity term is considered to be nonzero, as the gravitational force is included. The modified shallow water system is consisted by three hyperbolic first-order partial differential equations. The admitted Lie symmetries form a four-dimensional Lie algebra, the A 3,3 ⊕ A 1. However, for the viscosity free model, the admitted Lie symmetries are six and form the A 5,19 ⊕ A 1 Lie algebra. For each Lie algebra we determine the one-dimensional optimal system and we present all the possible independent reductions provided by the similarity transformations. New exact and analytic solutions are calculated for the modified Saint–Venant system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信