孔隙形态对地聚合物泡沫导热性的影响

Q3 Chemistry
C. Kurtulus, M. Baspinar
{"title":"孔隙形态对地聚合物泡沫导热性的影响","authors":"C. Kurtulus, M. Baspinar","doi":"10.18596/jotcsa.660727","DOIUrl":null,"url":null,"abstract":"Geopolymers are considered an alternative to conventional cement recently. The use of fly ash and blast furnace slag in geopolymer, which are waste products considered as an environmentally friendly product due to the solution to the storage of wastes also. Geopolymer concrete production is also reported to be 44-64% less than the cement that causes the most CO2 emissions. CO2 emissions are reduced due to the minimum processed natural minerals and industrial waste products used in the geopolymer system. For this reason, this study comes to the fore in terms of the evaluation of wastes. Production of porous geopolymers is potential in use in many industrial applications such as filtering, thermal insulation, light structural material, and catalysis. By controlling the pore type, pore size distribution, pore connectivity, and shape of porosities, potential usages are differentiated. In this study, closed porosity geopolymer foams were produced by the geopolymerization technique with the help of hydrogen peroxide and calcium stearate (CaS) as a surfactant. The thermal conductivity, density, and strength values was correlated with the changing pore size distribution depending on the amount of surfactant and foaming agent. In this study, porous geopolymers with density values 450-500 kg/m3, 0.069 W/mK thermal conductivity, and 2.1 MPa strength value was reached. The reduction in pore sizes due to CaS increase was analyzed. However, we did not observe a decrease in thermal conductivity values due to the reduction of the pore size. Exciting results for CaS content on thermal conductivity were reported.","PeriodicalId":17402,"journal":{"name":"Journal of the Turkish Chemical Society, Section A: Chemistry","volume":"7 1","pages":"535-544"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Pore Morphology on the Thermal Conductivity of Geopolymer Foam\",\"authors\":\"C. Kurtulus, M. Baspinar\",\"doi\":\"10.18596/jotcsa.660727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geopolymers are considered an alternative to conventional cement recently. The use of fly ash and blast furnace slag in geopolymer, which are waste products considered as an environmentally friendly product due to the solution to the storage of wastes also. Geopolymer concrete production is also reported to be 44-64% less than the cement that causes the most CO2 emissions. CO2 emissions are reduced due to the minimum processed natural minerals and industrial waste products used in the geopolymer system. For this reason, this study comes to the fore in terms of the evaluation of wastes. Production of porous geopolymers is potential in use in many industrial applications such as filtering, thermal insulation, light structural material, and catalysis. By controlling the pore type, pore size distribution, pore connectivity, and shape of porosities, potential usages are differentiated. In this study, closed porosity geopolymer foams were produced by the geopolymerization technique with the help of hydrogen peroxide and calcium stearate (CaS) as a surfactant. The thermal conductivity, density, and strength values was correlated with the changing pore size distribution depending on the amount of surfactant and foaming agent. In this study, porous geopolymers with density values 450-500 kg/m3, 0.069 W/mK thermal conductivity, and 2.1 MPa strength value was reached. The reduction in pore sizes due to CaS increase was analyzed. However, we did not observe a decrease in thermal conductivity values due to the reduction of the pore size. Exciting results for CaS content on thermal conductivity were reported.\",\"PeriodicalId\":17402,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society, Section A: Chemistry\",\"volume\":\"7 1\",\"pages\":\"535-544\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society, Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.660727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society, Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.660727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

摘要

近年来,地聚合物被认为是传统水泥的替代品。利用粉煤灰和高炉矿渣作为废弃物制成地聚合物,由于解决了废弃物的储存问题,也被认为是一种环保产品。据报道,地聚合物混凝土的产量比二氧化碳排放量最大的水泥少44-64%。由于在地聚合物系统中使用了最少的加工过的天然矿物和工业废物,因此减少了二氧化碳的排放。因此,本研究在废物评价方面显得尤为突出。多孔地聚合物的生产在许多工业应用中具有潜在的用途,如过滤、保温、轻结构材料和催化。通过控制孔隙类型、孔径分布、孔隙连通性和孔隙形态,区分潜在用途。在过氧化氢和硬脂酸钙(CaS)作为表面活性剂的作用下,采用地聚合技术制备了闭孔型地聚合物泡沫。热导率、密度和强度值与孔径分布随表面活性剂和发泡剂用量的变化有关。本研究获得了密度为450 ~ 500 kg/m3、导热系数为0.069 W/mK、强度为2.1 MPa的多孔地聚合物。分析了ca的增加对孔隙减小的影响。然而,我们没有观察到由于孔隙大小的减小而导致导热系数值的降低。报道了CaS含量对导热性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Pore Morphology on the Thermal Conductivity of Geopolymer Foam
Geopolymers are considered an alternative to conventional cement recently. The use of fly ash and blast furnace slag in geopolymer, which are waste products considered as an environmentally friendly product due to the solution to the storage of wastes also. Geopolymer concrete production is also reported to be 44-64% less than the cement that causes the most CO2 emissions. CO2 emissions are reduced due to the minimum processed natural minerals and industrial waste products used in the geopolymer system. For this reason, this study comes to the fore in terms of the evaluation of wastes. Production of porous geopolymers is potential in use in many industrial applications such as filtering, thermal insulation, light structural material, and catalysis. By controlling the pore type, pore size distribution, pore connectivity, and shape of porosities, potential usages are differentiated. In this study, closed porosity geopolymer foams were produced by the geopolymerization technique with the help of hydrogen peroxide and calcium stearate (CaS) as a surfactant. The thermal conductivity, density, and strength values was correlated with the changing pore size distribution depending on the amount of surfactant and foaming agent. In this study, porous geopolymers with density values 450-500 kg/m3, 0.069 W/mK thermal conductivity, and 2.1 MPa strength value was reached. The reduction in pore sizes due to CaS increase was analyzed. However, we did not observe a decrease in thermal conductivity values due to the reduction of the pore size. Exciting results for CaS content on thermal conductivity were reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
81
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信