固体障碍物和流体射流作用下火焰加速和爆轰过渡过程的流动特性

IF 1.7 4区 工程技术 Q3 MECHANICS
Z. Luan, Y. Huang, R. Deiterding, H. Peng, Y. You
{"title":"固体障碍物和流体射流作用下火焰加速和爆轰过渡过程的流动特性","authors":"Z. Luan,&nbsp;Y. Huang,&nbsp;R. Deiterding,&nbsp;H. Peng,&nbsp;Y. You","doi":"10.1007/s00193-022-01100-7","DOIUrl":null,"url":null,"abstract":"<div><p>The differences of flow characterization at the different stages of flame acceleration and transition to detonation in tubes with smooth walls, solid obstacles, and fluid jets are studied, especially the effects of flow instabilities on the process. The two-dimensional viscous unsteady reactive Navier–Stokes equations with a detailed chemistry model are solved numerically based on the structured adaptive mesh refinement technique in Adaptive Mesh Refinement Object-oriented C<span>\\(++\\)</span>. During the ignition to a low-speed flame stage, it is found that initial pressure wave interactions with the wall and Rayleigh–Taylor instabilities, induced by the density and pressure gradient misalignment between the ignition region and unburned gas, accelerate the wrinkling and deformation of the flame surface. Consequentially, the flame wrinkles trigger Darrieus–Landau instabilities and as a result the flame accelerates. At the main acceleration stage, the Kelvin–Helmholtz instability formed in the wake of solid obstacles and the strong Kelvin–Helmholtz instability caused by the jets lead to the formation of strong turbulent structures in the flowfield and accelerate the flame propagation. Richtmyer–Meshkov instabilities caused by the interactions of reflected shock waves and the flame surface lead to flame acceleration in the case with solid obstacles. Compared to the tube with fluid jets, although the solid obstacles induce stronger Richtmyer–Meshkov instabilities, the effect of Kelvin–Helmholtz instabilities is not obvious. In general, Darrieus–Landau instabilities and Rayleigh–Taylor instabilities dominate at the initial flame-developing stage, and Kelvin–Helmholtz instabilities and Richtmyer–Meshkov instabilities play a more critical role in the flame acceleration due to interactions of the flame, the shock, solid obstacles, and vortices during the deflagration propagation stage.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-022-01100-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Flow characterization during the flame acceleration and transition-to-detonation process with solid obstacles and fluid jets\",\"authors\":\"Z. Luan,&nbsp;Y. Huang,&nbsp;R. Deiterding,&nbsp;H. Peng,&nbsp;Y. You\",\"doi\":\"10.1007/s00193-022-01100-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The differences of flow characterization at the different stages of flame acceleration and transition to detonation in tubes with smooth walls, solid obstacles, and fluid jets are studied, especially the effects of flow instabilities on the process. The two-dimensional viscous unsteady reactive Navier–Stokes equations with a detailed chemistry model are solved numerically based on the structured adaptive mesh refinement technique in Adaptive Mesh Refinement Object-oriented C<span>\\\\(++\\\\)</span>. During the ignition to a low-speed flame stage, it is found that initial pressure wave interactions with the wall and Rayleigh–Taylor instabilities, induced by the density and pressure gradient misalignment between the ignition region and unburned gas, accelerate the wrinkling and deformation of the flame surface. Consequentially, the flame wrinkles trigger Darrieus–Landau instabilities and as a result the flame accelerates. At the main acceleration stage, the Kelvin–Helmholtz instability formed in the wake of solid obstacles and the strong Kelvin–Helmholtz instability caused by the jets lead to the formation of strong turbulent structures in the flowfield and accelerate the flame propagation. Richtmyer–Meshkov instabilities caused by the interactions of reflected shock waves and the flame surface lead to flame acceleration in the case with solid obstacles. Compared to the tube with fluid jets, although the solid obstacles induce stronger Richtmyer–Meshkov instabilities, the effect of Kelvin–Helmholtz instabilities is not obvious. In general, Darrieus–Landau instabilities and Rayleigh–Taylor instabilities dominate at the initial flame-developing stage, and Kelvin–Helmholtz instabilities and Richtmyer–Meshkov instabilities play a more critical role in the flame acceleration due to interactions of the flame, the shock, solid obstacles, and vortices during the deflagration propagation stage.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00193-022-01100-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-022-01100-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01100-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了光滑壁面、固体障碍物和流体射流条件下火焰加速到爆轰不同阶段的流动特性差异,特别是流动不稳定性对过程的影响。基于自适应网格细化面向对象C语言\(++\)中的结构化自适应网格细化技术,对具有精细化学模型的二维粘性非定常反应性Navier-Stokes方程进行了数值求解。在点火至低速火焰阶段,发现初始压力波与壁面的相互作用以及由点火区与未燃气体之间的密度和压力梯度错位引起的瑞利-泰勒不稳定性,加速了火焰表面的起皱和变形。因此,火焰皱纹触发达里厄-朗道不稳定性,结果火焰加速。在主加速阶段,固体障碍物尾迹形成的Kelvin-Helmholtz不稳定性和射流引起的强Kelvin-Helmholtz不稳定性导致流场中形成强湍流结构,加速火焰传播。在有固体障碍物的情况下,反射激波与火焰表面相互作用引起的richmyer - meshkov不稳定性导致火焰加速。与流体射流相比,固体障碍物诱导的richmyer - meshkov不稳定性较强,但Kelvin-Helmholtz不稳定性的影响不明显。一般来说,在火焰发展初期,达里乌斯-朗道不稳定性和瑞利-泰勒不稳定性占主导地位,而在爆燃传播阶段,由于火焰、激波、固体障碍物和涡流的相互作用,开尔文-亥姆霍兹不稳定性和richmyer - meshkov不稳定性在火焰加速过程中起着更为关键的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flow characterization during the flame acceleration and transition-to-detonation process with solid obstacles and fluid jets

Flow characterization during the flame acceleration and transition-to-detonation process with solid obstacles and fluid jets

The differences of flow characterization at the different stages of flame acceleration and transition to detonation in tubes with smooth walls, solid obstacles, and fluid jets are studied, especially the effects of flow instabilities on the process. The two-dimensional viscous unsteady reactive Navier–Stokes equations with a detailed chemistry model are solved numerically based on the structured adaptive mesh refinement technique in Adaptive Mesh Refinement Object-oriented C\(++\). During the ignition to a low-speed flame stage, it is found that initial pressure wave interactions with the wall and Rayleigh–Taylor instabilities, induced by the density and pressure gradient misalignment between the ignition region and unburned gas, accelerate the wrinkling and deformation of the flame surface. Consequentially, the flame wrinkles trigger Darrieus–Landau instabilities and as a result the flame accelerates. At the main acceleration stage, the Kelvin–Helmholtz instability formed in the wake of solid obstacles and the strong Kelvin–Helmholtz instability caused by the jets lead to the formation of strong turbulent structures in the flowfield and accelerate the flame propagation. Richtmyer–Meshkov instabilities caused by the interactions of reflected shock waves and the flame surface lead to flame acceleration in the case with solid obstacles. Compared to the tube with fluid jets, although the solid obstacles induce stronger Richtmyer–Meshkov instabilities, the effect of Kelvin–Helmholtz instabilities is not obvious. In general, Darrieus–Landau instabilities and Rayleigh–Taylor instabilities dominate at the initial flame-developing stage, and Kelvin–Helmholtz instabilities and Richtmyer–Meshkov instabilities play a more critical role in the flame acceleration due to interactions of the flame, the shock, solid obstacles, and vortices during the deflagration propagation stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信