{"title":"展开马尔可夫映射不变子集的结构、维数及联合不变性","authors":"Georgios Lamprinakis","doi":"10.1080/14689367.2023.2194520","DOIUrl":null,"url":null,"abstract":"A long-standing question is what invariant subsets can be shared by two maps acting on the same space. A similar question stands for invariant measures. A particular interesting case are expanding Markov maps of the circle. If the two involved maps are commuting the answer is almost complete. However very little is known in the non-commutative case. A first step is to analyse the structure of the invariant subsets of a single map. For a mapping of the circle of class , , we study the topological structure of the set consisting of all compact invariant subsets. Furthermore for a fixed such mapping we examine locally, in the category sense, how big is the set of all maps that have at least one non-trivial joint invariant compact subset. Lastly we show the strong dimensional relation between the maximal invariant subset of a given Markov map contained in a subinterval and the set of all right endpoints of its invariant subsets that are contained in the same subinterval, , as well as the continuous dependence of the dimension on the endpoints of the subinterval .","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"405 - 426"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and dimension of invariant subsets of expanding Markov maps and joint invariance\",\"authors\":\"Georgios Lamprinakis\",\"doi\":\"10.1080/14689367.2023.2194520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long-standing question is what invariant subsets can be shared by two maps acting on the same space. A similar question stands for invariant measures. A particular interesting case are expanding Markov maps of the circle. If the two involved maps are commuting the answer is almost complete. However very little is known in the non-commutative case. A first step is to analyse the structure of the invariant subsets of a single map. For a mapping of the circle of class , , we study the topological structure of the set consisting of all compact invariant subsets. Furthermore for a fixed such mapping we examine locally, in the category sense, how big is the set of all maps that have at least one non-trivial joint invariant compact subset. Lastly we show the strong dimensional relation between the maximal invariant subset of a given Markov map contained in a subinterval and the set of all right endpoints of its invariant subsets that are contained in the same subinterval, , as well as the continuous dependence of the dimension on the endpoints of the subinterval .\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"38 1\",\"pages\":\"405 - 426\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2194520\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2194520","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Structure and dimension of invariant subsets of expanding Markov maps and joint invariance
A long-standing question is what invariant subsets can be shared by two maps acting on the same space. A similar question stands for invariant measures. A particular interesting case are expanding Markov maps of the circle. If the two involved maps are commuting the answer is almost complete. However very little is known in the non-commutative case. A first step is to analyse the structure of the invariant subsets of a single map. For a mapping of the circle of class , , we study the topological structure of the set consisting of all compact invariant subsets. Furthermore for a fixed such mapping we examine locally, in the category sense, how big is the set of all maps that have at least one non-trivial joint invariant compact subset. Lastly we show the strong dimensional relation between the maximal invariant subset of a given Markov map contained in a subinterval and the set of all right endpoints of its invariant subsets that are contained in the same subinterval, , as well as the continuous dependence of the dimension on the endpoints of the subinterval .
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences