Filip Pančík, Z. Pakanová, Jana Mečárová, Alžbeta Čížová, S. Bystrický, S. Kozmon, P. Baráth
{"title":"O139霍乱弧菌O-特异性多糖的MALDI-TOF和LC/ESI-MS/MS片段分析","authors":"Filip Pančík, Z. Pakanová, Jana Mečárová, Alžbeta Čížová, S. Bystrický, S. Kozmon, P. Baráth","doi":"10.1177/14690667221099119","DOIUrl":null,"url":null,"abstract":"Cholera is a life-threatening diarrhoeal disease caused by ingestion of Vibrio cholerae . There are at least 200 serogroups of V. cholerae but only two of them are causing epidemics – O1 and O139 serogroups. Fragmentation analysis of O-antigen, also known as O-specific polysaccharide (OSP), from lipopolysaccharide (LPS) is important to obtain new information about its structure, such as fragmentation patterns and fragment structures. In the present study, OSP and core (OSPc) structure from V. cholerae O139 was studied using matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) and direct injection electrospray ionization (ESI)-MS methods. MALDI-TOF analysis was performed in positive-ion reflectron mode, while ESI-MS was performed in negative ionization mode. ESI-MS analysis was followed by ESI-MS/MS analysis. Using this analytical approach, we managed to obtain two possible fragmentation pathways of OSP from V. cholerae O139 . Mutual sign of these two pathways is shortening the length of the oligosaccharide by neutral loss of monosaccharide residues. Additionally, liquid chromatography-MS analysis was performed to separate depicted molecular forms of OSPc.","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":"28 1","pages":"47 - 55"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fragmentation analysis of O-specific polysaccharide from bacteria Vibrio cholerae O139 by MALDI-TOF and LC/ESI-MS/MS\",\"authors\":\"Filip Pančík, Z. Pakanová, Jana Mečárová, Alžbeta Čížová, S. Bystrický, S. Kozmon, P. Baráth\",\"doi\":\"10.1177/14690667221099119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cholera is a life-threatening diarrhoeal disease caused by ingestion of Vibrio cholerae . There are at least 200 serogroups of V. cholerae but only two of them are causing epidemics – O1 and O139 serogroups. Fragmentation analysis of O-antigen, also known as O-specific polysaccharide (OSP), from lipopolysaccharide (LPS) is important to obtain new information about its structure, such as fragmentation patterns and fragment structures. In the present study, OSP and core (OSPc) structure from V. cholerae O139 was studied using matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) and direct injection electrospray ionization (ESI)-MS methods. MALDI-TOF analysis was performed in positive-ion reflectron mode, while ESI-MS was performed in negative ionization mode. ESI-MS analysis was followed by ESI-MS/MS analysis. Using this analytical approach, we managed to obtain two possible fragmentation pathways of OSP from V. cholerae O139 . Mutual sign of these two pathways is shortening the length of the oligosaccharide by neutral loss of monosaccharide residues. Additionally, liquid chromatography-MS analysis was performed to separate depicted molecular forms of OSPc.\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":\"28 1\",\"pages\":\"47 - 55\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667221099119\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667221099119","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Fragmentation analysis of O-specific polysaccharide from bacteria Vibrio cholerae O139 by MALDI-TOF and LC/ESI-MS/MS
Cholera is a life-threatening diarrhoeal disease caused by ingestion of Vibrio cholerae . There are at least 200 serogroups of V. cholerae but only two of them are causing epidemics – O1 and O139 serogroups. Fragmentation analysis of O-antigen, also known as O-specific polysaccharide (OSP), from lipopolysaccharide (LPS) is important to obtain new information about its structure, such as fragmentation patterns and fragment structures. In the present study, OSP and core (OSPc) structure from V. cholerae O139 was studied using matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) and direct injection electrospray ionization (ESI)-MS methods. MALDI-TOF analysis was performed in positive-ion reflectron mode, while ESI-MS was performed in negative ionization mode. ESI-MS analysis was followed by ESI-MS/MS analysis. Using this analytical approach, we managed to obtain two possible fragmentation pathways of OSP from V. cholerae O139 . Mutual sign of these two pathways is shortening the length of the oligosaccharide by neutral loss of monosaccharide residues. Additionally, liquid chromatography-MS analysis was performed to separate depicted molecular forms of OSPc.
期刊介绍:
JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.