复杂网络物理系统的集群控制

Q3 Physics and Astronomy
Denis Uzhva, O. Granichin
{"title":"复杂网络物理系统的集群控制","authors":"Denis Uzhva, O. Granichin","doi":"10.35470/2226-4116-2021-10-3-191-200","DOIUrl":null,"url":null,"abstract":"To our minds, the real world appears as a composition of different interacting entitites, which demonstrate complex behavior. In the current paper, we primarly aim to study such networked systems by developing corresponding approaches to modeling them, given a class of tasks. We derive it from the primary concept of information and a system, with corresponding dynamics emerging from interactions between system components. As we progress through the study, we discover three possible levels of certain synchronous pattern composition in complex systems: microscopic (the level of elementary components), mesoscopic (the level of clusters), and macroscopic (the level of the whole system). Above all, we focus on the clusterization phenomenon, which allows to reduce system complexity by regarding only a small number of stable manifolds, corresponding to cluster synchronization of system component states—as opposed to regarding the system as a whole or each elementary component separately. Eventually, we demonstrate\nhow an optimization problem for cluster control synthesis can be formulated for a simple discrete linear system with clusterization.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cluster control of complex cyber-physical systems\",\"authors\":\"Denis Uzhva, O. Granichin\",\"doi\":\"10.35470/2226-4116-2021-10-3-191-200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To our minds, the real world appears as a composition of different interacting entitites, which demonstrate complex behavior. In the current paper, we primarly aim to study such networked systems by developing corresponding approaches to modeling them, given a class of tasks. We derive it from the primary concept of information and a system, with corresponding dynamics emerging from interactions between system components. As we progress through the study, we discover three possible levels of certain synchronous pattern composition in complex systems: microscopic (the level of elementary components), mesoscopic (the level of clusters), and macroscopic (the level of the whole system). Above all, we focus on the clusterization phenomenon, which allows to reduce system complexity by regarding only a small number of stable manifolds, corresponding to cluster synchronization of system component states—as opposed to regarding the system as a whole or each elementary component separately. Eventually, we demonstrate\\nhow an optimization problem for cluster control synthesis can be formulated for a simple discrete linear system with clusterization.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2021-10-3-191-200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-3-191-200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

摘要

在我们看来,现实世界是由不同的相互作用的实体组成的,它们表现出复杂的行为。在本文中,我们的主要目标是在给定一类任务的情况下,通过开发相应的建模方法来研究这种网络系统。我们从信息和系统的基本概念中得出它,系统组件之间的相互作用产生了相应的动力学。随着研究的进展,我们发现复杂系统中某些同步模式组成的三个可能水平:微观(基本成分的水平)、介观(团簇的水平)和宏观(整个系统的水平)。最重要的是,我们关注聚类现象,它允许通过只考虑少量稳定流形来降低系统复杂性,对应于系统组件状态的聚类同步,而不是将系统视为一个整体或每个基本组件单独看待。最后,我们证明了如何为具有聚类的简单离散线性系统制定聚类控制综合的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster control of complex cyber-physical systems
To our minds, the real world appears as a composition of different interacting entitites, which demonstrate complex behavior. In the current paper, we primarly aim to study such networked systems by developing corresponding approaches to modeling them, given a class of tasks. We derive it from the primary concept of information and a system, with corresponding dynamics emerging from interactions between system components. As we progress through the study, we discover three possible levels of certain synchronous pattern composition in complex systems: microscopic (the level of elementary components), mesoscopic (the level of clusters), and macroscopic (the level of the whole system). Above all, we focus on the clusterization phenomenon, which allows to reduce system complexity by regarding only a small number of stable manifolds, corresponding to cluster synchronization of system component states—as opposed to regarding the system as a whole or each elementary component separately. Eventually, we demonstrate how an optimization problem for cluster control synthesis can be formulated for a simple discrete linear system with clusterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信