{"title":"热孔弹性介质中非均匀平面波的反射与透射","authors":"Wanting Hou, Li-Yun Fu, José M. Carcione","doi":"10.1007/s10712-023-09782-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the reflection and transmission (<i>R</i>/<i>T</i>) characteristics of inhomogeneous plane waves at the interface between two dissimilar fluid-saturated thermoporoelastic media at arbitrary incidence angles. The <i>R</i>/<i>T</i> behaviors are formulated based on the classic Lord–Shulman (LS) and Green–Lindsay (GL) heat-transfer models as well as a generalized LS model, respectively. The latter results from different values of the Maxwell-Vernotte-Cattaneo relaxation times. These thermoporoelastic models can predict three inhomogeneous longitudinal (P1, P2, and T) waves and one shear (S) wave. We first compare the LS and GL models for the phase velocities and attenuation coefficients of plane waves, where the homogeneous wave has a higher velocity but weaker thermal attenuation than the inhomogeneous wave. Considering the oil–water contact, we investigate <i>R</i>/<i>T</i> coefficients associated with phase angles and energy ratios, which are formulated in terms of incidence and inhomogeneity angles, with the latter having a significant effect on the interference energy. The proposed thermoporoelastic <i>R</i>/<i>T</i> model predicts different energy partitions between the P and S modes, especially at the critical angle and near grazing incidence. We observe the anomalous behavior for an incident P wave with the inhomogeneity angle near the grazing incidence. The energy partition at the critical angle is mainly controlled by relaxation times and boundary conditions. Beyond the critical angle, the energy flux predicted by the Biot poroelastic and LS models vanishes vertically, becoming the opposite for the GL and generalized LS models. The resulting energy flux shows a good agreement with the <i>R</i>/<i>T</i> coefficients, and they are well proven by the conservation of energy, where the results are valuable for the exploration of thermal reservoirs.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"44 6","pages":"1897 - 1917"},"PeriodicalIF":4.9000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reflection and Transmission of Inhomogeneous Plane Waves in Thermoporoelastic Media\",\"authors\":\"Wanting Hou, Li-Yun Fu, José M. Carcione\",\"doi\":\"10.1007/s10712-023-09782-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the reflection and transmission (<i>R</i>/<i>T</i>) characteristics of inhomogeneous plane waves at the interface between two dissimilar fluid-saturated thermoporoelastic media at arbitrary incidence angles. The <i>R</i>/<i>T</i> behaviors are formulated based on the classic Lord–Shulman (LS) and Green–Lindsay (GL) heat-transfer models as well as a generalized LS model, respectively. The latter results from different values of the Maxwell-Vernotte-Cattaneo relaxation times. These thermoporoelastic models can predict three inhomogeneous longitudinal (P1, P2, and T) waves and one shear (S) wave. We first compare the LS and GL models for the phase velocities and attenuation coefficients of plane waves, where the homogeneous wave has a higher velocity but weaker thermal attenuation than the inhomogeneous wave. Considering the oil–water contact, we investigate <i>R</i>/<i>T</i> coefficients associated with phase angles and energy ratios, which are formulated in terms of incidence and inhomogeneity angles, with the latter having a significant effect on the interference energy. The proposed thermoporoelastic <i>R</i>/<i>T</i> model predicts different energy partitions between the P and S modes, especially at the critical angle and near grazing incidence. We observe the anomalous behavior for an incident P wave with the inhomogeneity angle near the grazing incidence. The energy partition at the critical angle is mainly controlled by relaxation times and boundary conditions. Beyond the critical angle, the energy flux predicted by the Biot poroelastic and LS models vanishes vertically, becoming the opposite for the GL and generalized LS models. The resulting energy flux shows a good agreement with the <i>R</i>/<i>T</i> coefficients, and they are well proven by the conservation of energy, where the results are valuable for the exploration of thermal reservoirs.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"44 6\",\"pages\":\"1897 - 1917\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-023-09782-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-023-09782-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Reflection and Transmission of Inhomogeneous Plane Waves in Thermoporoelastic Media
We study the reflection and transmission (R/T) characteristics of inhomogeneous plane waves at the interface between two dissimilar fluid-saturated thermoporoelastic media at arbitrary incidence angles. The R/T behaviors are formulated based on the classic Lord–Shulman (LS) and Green–Lindsay (GL) heat-transfer models as well as a generalized LS model, respectively. The latter results from different values of the Maxwell-Vernotte-Cattaneo relaxation times. These thermoporoelastic models can predict three inhomogeneous longitudinal (P1, P2, and T) waves and one shear (S) wave. We first compare the LS and GL models for the phase velocities and attenuation coefficients of plane waves, where the homogeneous wave has a higher velocity but weaker thermal attenuation than the inhomogeneous wave. Considering the oil–water contact, we investigate R/T coefficients associated with phase angles and energy ratios, which are formulated in terms of incidence and inhomogeneity angles, with the latter having a significant effect on the interference energy. The proposed thermoporoelastic R/T model predicts different energy partitions between the P and S modes, especially at the critical angle and near grazing incidence. We observe the anomalous behavior for an incident P wave with the inhomogeneity angle near the grazing incidence. The energy partition at the critical angle is mainly controlled by relaxation times and boundary conditions. Beyond the critical angle, the energy flux predicted by the Biot poroelastic and LS models vanishes vertically, becoming the opposite for the GL and generalized LS models. The resulting energy flux shows a good agreement with the R/T coefficients, and they are well proven by the conservation of energy, where the results are valuable for the exploration of thermal reservoirs.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.