图稳定性的几个条件

IF 0.9 3区 数学 Q2 MATHEMATICS
Ademir Hujdurović, Ðorđe Mitrović
{"title":"图稳定性的几个条件","authors":"Ademir Hujdurović,&nbsp;Ðorđe Mitrović","doi":"10.1002/jgt.23018","DOIUrl":null,"url":null,"abstract":"<p>A graph <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> is said to be <i>unstable</i> if the direct product <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $X\\times {K}_{2}$</annotation>\n </semantics></math> (also called the <i>canonical double cover</i> of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>) has automorphisms that do not come from automorphisms of its factors <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${K}_{2}$</annotation>\n </semantics></math>. It is <i>nontrivially unstable</i> if it is unstable, connected, nonbipartite, and distinct vertices have distinct sets of neighbours. In this paper, we prove two sufficient conditions for stability of graphs in which every edge lies on a triangle, revising an incorrect claim of Surowski and filling in some gaps in the proof of another one. We also consider triangle-free graphs, and prove that there are no nontrivially unstable triangle-free graphs of diameter 2. An interesting construction of nontrivially unstable graphs is given and several open problems are posed.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 1","pages":"98-109"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23018","citationCount":"2","resultStr":"{\"title\":\"Some conditions implying stability of graphs\",\"authors\":\"Ademir Hujdurović,&nbsp;Ðorđe Mitrović\",\"doi\":\"10.1002/jgt.23018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graph <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> is said to be <i>unstable</i> if the direct product <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> $X\\\\times {K}_{2}$</annotation>\\n </semantics></math> (also called the <i>canonical double cover</i> of <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math>) has automorphisms that do not come from automorphisms of its factors <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{2}$</annotation>\\n </semantics></math>. It is <i>nontrivially unstable</i> if it is unstable, connected, nonbipartite, and distinct vertices have distinct sets of neighbours. In this paper, we prove two sufficient conditions for stability of graphs in which every edge lies on a triangle, revising an incorrect claim of Surowski and filling in some gaps in the proof of another one. We also consider triangle-free graphs, and prove that there are no nontrivially unstable triangle-free graphs of diameter 2. An interesting construction of nontrivially unstable graphs is given and several open problems are posed.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"105 1\",\"pages\":\"98-109\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23018\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23018\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

如果一个图的直接积(也称为的正则双盖)具有非其因子和的自同构的自同构,则称其为不稳定图。如果它是不稳定的,连通的,非二部的,并且不同的顶点有不同的邻居集,则它是非平凡不稳定的。本文证明了每条边都在三角形上的图的稳定性的两个充分条件,修正了Surowski的一个错误断言,并填补了另一个证明中的一些空白。我们还考虑了无三角形图,并证明了不存在直径为2的非平凡不稳定无三角形图。给出了非平凡不稳定图的一个有趣构造,并提出了几个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some conditions implying stability of graphs

Some conditions implying stability of graphs

A graph X $X$ is said to be unstable if the direct product X × K 2 $X\times {K}_{2}$ (also called the canonical double cover of X $X$ ) has automorphisms that do not come from automorphisms of its factors X $X$ and K 2 ${K}_{2}$ . It is nontrivially unstable if it is unstable, connected, nonbipartite, and distinct vertices have distinct sets of neighbours. In this paper, we prove two sufficient conditions for stability of graphs in which every edge lies on a triangle, revising an incorrect claim of Surowski and filling in some gaps in the proof of another one. We also consider triangle-free graphs, and prove that there are no nontrivially unstable triangle-free graphs of diameter 2. An interesting construction of nontrivially unstable graphs is given and several open problems are posed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信