Regin Das Thankaian, Meena Muthukrishnan, S. M. K. Thiagamani, S. Siengchin, S. Rangappa
{"title":"金属掺杂和共掺杂对氧化锡纳米粒子电学和光学行为的影响","authors":"Regin Das Thankaian, Meena Muthukrishnan, S. M. K. Thiagamani, S. Siengchin, S. Rangappa","doi":"10.1680/jnaen.23.00010","DOIUrl":null,"url":null,"abstract":"Metal oxide semiconductors (MOS) with distinctive optical and electrical properties are required by the modern electronics industry. In this research it was found that doping of transition and rare-earth metals is suitable for tuning the optical bandgap and dielectric parameters of SnO2 Nanoparticles to meet the requirement for high conductive semiconductors Via one-step hydrothermal synthesis Doping of Sm causes SnO2NP to have a narrower bandgap (2.54 eV) than pure SnO2NPs (3.36 eV), and increased conductivity at higher frequencies and temperature, which is crucial for the potential applications like light-emitting diodes, biological labels, optoelectronic devices, and other technologies. The particle size of the doped and co-doped sample was found to be smaller than pure SnO2 which effectively pronounced the quantum confinement effect in these metal oxides. Co-doping of Sm-Cu ions in the SnO2 lattice was done for the first time to increase the dielectric strength, with absorption shift towards visible blue region suggest the use of this particular sample for photocatalytic application.","PeriodicalId":44365,"journal":{"name":"Nanomaterials and Energy","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of metal doping and codoping on the electrical and optical behavior of tin oxide nano particles\",\"authors\":\"Regin Das Thankaian, Meena Muthukrishnan, S. M. K. Thiagamani, S. Siengchin, S. Rangappa\",\"doi\":\"10.1680/jnaen.23.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal oxide semiconductors (MOS) with distinctive optical and electrical properties are required by the modern electronics industry. In this research it was found that doping of transition and rare-earth metals is suitable for tuning the optical bandgap and dielectric parameters of SnO2 Nanoparticles to meet the requirement for high conductive semiconductors Via one-step hydrothermal synthesis Doping of Sm causes SnO2NP to have a narrower bandgap (2.54 eV) than pure SnO2NPs (3.36 eV), and increased conductivity at higher frequencies and temperature, which is crucial for the potential applications like light-emitting diodes, biological labels, optoelectronic devices, and other technologies. The particle size of the doped and co-doped sample was found to be smaller than pure SnO2 which effectively pronounced the quantum confinement effect in these metal oxides. Co-doping of Sm-Cu ions in the SnO2 lattice was done for the first time to increase the dielectric strength, with absorption shift towards visible blue region suggest the use of this particular sample for photocatalytic application.\",\"PeriodicalId\":44365,\"journal\":{\"name\":\"Nanomaterials and Energy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jnaen.23.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jnaen.23.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of metal doping and codoping on the electrical and optical behavior of tin oxide nano particles
Metal oxide semiconductors (MOS) with distinctive optical and electrical properties are required by the modern electronics industry. In this research it was found that doping of transition and rare-earth metals is suitable for tuning the optical bandgap and dielectric parameters of SnO2 Nanoparticles to meet the requirement for high conductive semiconductors Via one-step hydrothermal synthesis Doping of Sm causes SnO2NP to have a narrower bandgap (2.54 eV) than pure SnO2NPs (3.36 eV), and increased conductivity at higher frequencies and temperature, which is crucial for the potential applications like light-emitting diodes, biological labels, optoelectronic devices, and other technologies. The particle size of the doped and co-doped sample was found to be smaller than pure SnO2 which effectively pronounced the quantum confinement effect in these metal oxides. Co-doping of Sm-Cu ions in the SnO2 lattice was done for the first time to increase the dielectric strength, with absorption shift towards visible blue region suggest the use of this particular sample for photocatalytic application.