相对简单配合物上的可壳层及其h向量

IF 0.5 4区 数学 Q3 MATHEMATICS
Jean-Yves Welschinger
{"title":"相对简单配合物上的可壳层及其h向量","authors":"Jean-Yves Welschinger","doi":"10.1515/advgeom-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract An h-tiling on a finite simplicial complex is a partition of its geometric realization by maximal simplices deprived of several codimension one faces together with possibly their remaining face of highest codimension. In this last case, the tiles are said to be critical. An h-tiling thus induces a partitioning of its face poset by closed or semi-open intervals. We prove the existence of h-tilings on every finite simplicial complex after finitely many stellar subdivisions at maximal simplices. These tilings are moreover shellable. We also prove that the number of tiles of each type used by a tiling, encoded by its h-vector, is determined by the number of critical tiles of each index it uses, encoded by its critical vector. In the case of closed triangulated manifolds, these vectors satisfy some palindromic property. We finally study the behavior of tilings under any stellar subdivision.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shellable tilings on relative simplicial complexes and their h-vectors\",\"authors\":\"Jean-Yves Welschinger\",\"doi\":\"10.1515/advgeom-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An h-tiling on a finite simplicial complex is a partition of its geometric realization by maximal simplices deprived of several codimension one faces together with possibly their remaining face of highest codimension. In this last case, the tiles are said to be critical. An h-tiling thus induces a partitioning of its face poset by closed or semi-open intervals. We prove the existence of h-tilings on every finite simplicial complex after finitely many stellar subdivisions at maximal simplices. These tilings are moreover shellable. We also prove that the number of tiles of each type used by a tiling, encoded by its h-vector, is determined by the number of critical tiles of each index it uses, encoded by its critical vector. In the case of closed triangulated manifolds, these vectors satisfy some palindromic property. We finally study the behavior of tilings under any stellar subdivision.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

有限简单复合体上的h-平铺是用剥夺了几个余维面和可能剩下的最高余维面的极大简单体对其几何实现的分割。在最后一种情况下,瓷砖被认为是关键的。因此,h形平铺通过封闭或半开放的间隔对其面位进行划分。我们证明了在极大简单点上进行有限次恒星细分后,每一个有限简单复合体上h-tilings的存在性。此外,这些瓷砖是可剥的。我们还证明了由其h向量编码的贴片所使用的每种类型的瓦片的数量,是由它使用的每个索引的关键瓦片的数量决定的,由其关键向量编码。在闭三角化流形的情况下,这些向量满足一些回文性质。我们最终研究了任何恒星细分下的平铺行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shellable tilings on relative simplicial complexes and their h-vectors
Abstract An h-tiling on a finite simplicial complex is a partition of its geometric realization by maximal simplices deprived of several codimension one faces together with possibly their remaining face of highest codimension. In this last case, the tiles are said to be critical. An h-tiling thus induces a partitioning of its face poset by closed or semi-open intervals. We prove the existence of h-tilings on every finite simplicial complex after finitely many stellar subdivisions at maximal simplices. These tilings are moreover shellable. We also prove that the number of tiles of each type used by a tiling, encoded by its h-vector, is determined by the number of critical tiles of each index it uses, encoded by its critical vector. In the case of closed triangulated manifolds, these vectors satisfy some palindromic property. We finally study the behavior of tilings under any stellar subdivision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信