{"title":"基于深度学习的注塑机注射速度预测控制","authors":"Zhigang Ren, Yao Li, Zongze Wu, Shengli Xie","doi":"10.1155/2022/7662264","DOIUrl":null,"url":null,"abstract":"Rapid and reliable optimal control of injection molding machines (IMMs) is critical for the effective production of injection-molded goods, especially in the situation of restricted computer resources of embedded equipment in IMMs. In this paper, an optimal tracking injection velocity control problem arising in a typical IMM is studied. An effective hybrid intelligent control approach with less computing resources for real-time implementation based on the deep learning (DL) method to mimic the classical model predictive control rule is developed to deal with the tracking control of the injection speed. The proposed method utilizes the gated recurrent unit neural network to learn and predict the optimal time series control process data produced by the traditional model predictive controller. The benefits of this approach over the conventional optimization method are illustrated through simulation results, which show that the convergent DL-based controller can effectively avoid the complex calculation in the control process of IMMs and meet the requirements of more robustness and resist environmental uncertainty to a certain level and can be potentially implemented in embedded hardware much more efficiently and conveniently with a smaller memory footprint and faster computation time.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning-Based Predictive Control of Injection Velocity in Injection Molding Machines\",\"authors\":\"Zhigang Ren, Yao Li, Zongze Wu, Shengli Xie\",\"doi\":\"10.1155/2022/7662264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid and reliable optimal control of injection molding machines (IMMs) is critical for the effective production of injection-molded goods, especially in the situation of restricted computer resources of embedded equipment in IMMs. In this paper, an optimal tracking injection velocity control problem arising in a typical IMM is studied. An effective hybrid intelligent control approach with less computing resources for real-time implementation based on the deep learning (DL) method to mimic the classical model predictive control rule is developed to deal with the tracking control of the injection speed. The proposed method utilizes the gated recurrent unit neural network to learn and predict the optimal time series control process data produced by the traditional model predictive controller. The benefits of this approach over the conventional optimization method are illustrated through simulation results, which show that the convergent DL-based controller can effectively avoid the complex calculation in the control process of IMMs and meet the requirements of more robustness and resist environmental uncertainty to a certain level and can be potentially implemented in embedded hardware much more efficiently and conveniently with a smaller memory footprint and faster computation time.\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7662264\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/7662264","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Deep Learning-Based Predictive Control of Injection Velocity in Injection Molding Machines
Rapid and reliable optimal control of injection molding machines (IMMs) is critical for the effective production of injection-molded goods, especially in the situation of restricted computer resources of embedded equipment in IMMs. In this paper, an optimal tracking injection velocity control problem arising in a typical IMM is studied. An effective hybrid intelligent control approach with less computing resources for real-time implementation based on the deep learning (DL) method to mimic the classical model predictive control rule is developed to deal with the tracking control of the injection speed. The proposed method utilizes the gated recurrent unit neural network to learn and predict the optimal time series control process data produced by the traditional model predictive controller. The benefits of this approach over the conventional optimization method are illustrated through simulation results, which show that the convergent DL-based controller can effectively avoid the complex calculation in the control process of IMMs and meet the requirements of more robustness and resist environmental uncertainty to a certain level and can be potentially implemented in embedded hardware much more efficiently and conveniently with a smaller memory footprint and faster computation time.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.