{"title":"肿瘤治疗策略:靶向肿瘤微环境和纳米技术","authors":"A. Abdel-Halim","doi":"10.4103/epj.epj_188_22","DOIUrl":null,"url":null,"abstract":"Cancer is still a serious health problem globally. Conventional therapies have adverse effects, which affect human life quality. Tumor microenvironment (TME), also known as surrounding stroma, has a contributory role in cancer development. Understanding the interaction between TME and cancer progression is a challenge and helps to develop new therapeutic strategies that neutralize the tracks taken by cancer cells to grow, spread, and resist therapy. Therefore, targeting TME components may be effective in improving tumor therapy. Using nanotechnology for drug delivery is of great interest, where it overcomes some obstacles such as solubility and absorption of drugs and delivering them to the appropriate place of action. The main target of nanotechnology for drug delivery is the ability to differentiate between normal and cancer cells. It can be concluded that TME is an important complementary strategy for the development of anticancer drugs. Multitargeted therapy has better efficient potential than individual therapy against cancer.","PeriodicalId":11568,"journal":{"name":"Egyptian Pharmaceutical Journal","volume":"22 1","pages":"165 - 176"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for cancer therapy: targeting tumor microenvironment and nanotechnology\",\"authors\":\"A. Abdel-Halim\",\"doi\":\"10.4103/epj.epj_188_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is still a serious health problem globally. Conventional therapies have adverse effects, which affect human life quality. Tumor microenvironment (TME), also known as surrounding stroma, has a contributory role in cancer development. Understanding the interaction between TME and cancer progression is a challenge and helps to develop new therapeutic strategies that neutralize the tracks taken by cancer cells to grow, spread, and resist therapy. Therefore, targeting TME components may be effective in improving tumor therapy. Using nanotechnology for drug delivery is of great interest, where it overcomes some obstacles such as solubility and absorption of drugs and delivering them to the appropriate place of action. The main target of nanotechnology for drug delivery is the ability to differentiate between normal and cancer cells. It can be concluded that TME is an important complementary strategy for the development of anticancer drugs. Multitargeted therapy has better efficient potential than individual therapy against cancer.\",\"PeriodicalId\":11568,\"journal\":{\"name\":\"Egyptian Pharmaceutical Journal\",\"volume\":\"22 1\",\"pages\":\"165 - 176\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Pharmaceutical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/epj.epj_188_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Pharmaceutical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/epj.epj_188_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Strategies for cancer therapy: targeting tumor microenvironment and nanotechnology
Cancer is still a serious health problem globally. Conventional therapies have adverse effects, which affect human life quality. Tumor microenvironment (TME), also known as surrounding stroma, has a contributory role in cancer development. Understanding the interaction between TME and cancer progression is a challenge and helps to develop new therapeutic strategies that neutralize the tracks taken by cancer cells to grow, spread, and resist therapy. Therefore, targeting TME components may be effective in improving tumor therapy. Using nanotechnology for drug delivery is of great interest, where it overcomes some obstacles such as solubility and absorption of drugs and delivering them to the appropriate place of action. The main target of nanotechnology for drug delivery is the ability to differentiate between normal and cancer cells. It can be concluded that TME is an important complementary strategy for the development of anticancer drugs. Multitargeted therapy has better efficient potential than individual therapy against cancer.